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Introduction
Go is a board game with simple rules, yet very complex gameplay and strate-
gies. It has a strong support in many countries, with millions of players world-
wide.1 As many of these (mainly amateur) players play online2 and the top
professional matches are usually recorded and published in magazines or on-
line (Yevstygnyeyev, 2013; van der Steen, 2013), there exists alarge number of
game records for players of di�erent skill. Moreover, since the game held a strong
social status in the past, there are lots of historical records as well, though mainly
from Japan of 17th century and later (Hall { Fairbairn, winter 2011a). Usually,
the records of the master-level players are studied manually to grasp a deeper
understanding of the game and to improve one's intuition.

So far, not much has been done in analysing these records using computers.
There are programs that serve as tools to study the opening phase of the game
by giving simple statistics of next move from professional games (G•ortz, 2012;
de Groot, 2005). The professional games have also been used in computer Go;
patterns from the professional games are used as a heuristic to improve the tree
searching, e.g. (Coulom, 2007). Apart from these, we are not aware of any other
uses.

In (Baudi�s { Moud�r��k, 2012), we have devised a general methodology for eval-
uating a player based on a sample of games he played. By comparing the eval-
uations of di�erent players we were able to distinguish between players of e.g.
di�erent strengths, under the assumption that players who havesimilar strength
should have similar evaluations.

This work presents the methodology, extended in several ways:

1. We introduce new features into the evaluation and compare theircontribu-
tions.

2. We re�ne the machine learning methods used to analyze these evaluations.

3. We test the methodology on larger samples of games, and improvethe
dataset sampling to be more accurate.

4. We demonstrate the concept by a web application, which also serves as
a simple teaching aid to Go players, while gathering more data.

Outline

This thesis is organized as follows. Firstly, we present the game of Go(Chap-
ter 1). Secondly, we discuss the problem at hand and sketch our approach to it
(Chapter 2). Next two chapters present the features used to extract information
from the games (Chapter 3) and the machine learning methods usedto learn
the dependencies (Chapter 4). The actual experimental resultsare detailed in
Chapter 5. Finally, we discuss the results and future directions (Chapter 6).

1A Japanese 2002 estimate of Go Census (2002) gave an estimate of24 millions of Go
players worldwide.

2E.g. on the Kiseido Go Server (Shubert, 2013a).
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1. Game of Go
The game of Go is one of the oldest board games known to humankind,the
earliest records spanning back to 500 B.C. (Fairbairn, 1995). As time passed by,
Go became an important part of East Asian culture. Especially in Japan, Go has
had a very important social status. Despite this popularity, the game was largely
unknown in the West until the beginning of the 20th century (van Ees, 2005).
Today, Go's popularity is spread almost all over the globe, though the strongest
players still reside in Korea, China and Japan.

Go is a two-player game with perfect information. The two players take turns
in placing stones on free intersections on a playing board (goban). The �rst player
has black stones, the second one has white stones. The most widelyused board
size is 19� 19 intersections, the 13� 13 or 9� 9 boards are also quite usual.

The simplicity of rules implies that a player can play on almost all of the
empty intersections. In no way does this mean that every valid moveis a good
move as well. Quite the opposite is true | the majority of valid moves are
terrible. This means that Go has a very large branching factor, which makes it
a hard problem for computers. The computer Go is currently a verypopular �eld
of study, because it eludes the traditional AI techniques. For instance, brute-
force searching is not applicable in Go, because the search space explodes long
before any nearly good solution is found. In the last decade, a big progress has
been made with Monte-Carlo tree search methods (MCTS for short). The main
idea is that the probability of a player winning given he plays a particularmove
can be approximated using random simulations. It is surprising how well this
technique performs. Recently (in march 2012), a computer program Zen beat
a former top Japanese professional Takemiya Masaki at a 4-stone handicap game
(the computer being the weaker player) (Wedd, 2013).1 A good survey on the
MCTS is given by Browne et al. (2012).

1.1 Basic Rules

This section presents a minimal working overview of the game rules and it might
be skipped if you are familiar with the game. However, it is not meant asa tutorial
to the game, for there is an abundant supply of study material online. For
example, see Sensei's Library (2013k) for a nice introduction.

Go is a game which has very simple rules. Players2 take turns in placing black
and white stones at the free intersections on the board. Players may choose to
give up on the right to play, this is called apass. When both playerspass, the
game is �nished. Next, we shall clarify what comprises the moves.

De�nition. A liberty of a stone (or a group of stones) is an open intersection

1The top programs combine many techniques in line with MCTS, usually byskewing the
distributions obtained by random simulations in direction given by someprior knowledge. This
might include knowledge from pattern matching (good shapes have bonus) dictionaries of open-
ings (good openings have bonus), local searches and other heuristics. See (Wikipedia, 2013) for
a good overview.

2In Go, the black player Black is referred to as she, while the white playerWhite is referred
to as he.
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Figure 1.1: Basic situations.

directly next to the stone (or in the direct neighbourhood ofthe group of stones).

For example, the stone in Figure 1.1 has 3 liberties (intersections at the

top, left and bottom of the stone, labelled 1, 2, 3 in the �gure), the group of
3 stones has 6 liberties in total. We say that a stone (or a group of them) is in
atari if it has only one liberty.

Essentially, there are only two main rules in Go:

De�nition. Rule of liberties . Every stone (or group of stones) on the board
must have at least oneliberty . Stones that have just lost their lastliberty are
removed from the board, we say they werecaptured by the player who removed
the last liberty.

De�nition. Rule of ko . The stones on the board must not repeat any previous
position of stones. Such moves are forbidden.3

Example situations: (see Figure 1.1)

� The �rst rule de�nes basic mechanics of the game. For example, because
the 3 white stones in upper right corner of Figure 1.1 are inatari, Black
can capture them by playing ata to take the last liberty away. Once he
places his stone ata, he removes the 3 white stones from the board.

� Because it has only one remaining liberty (atb), the black group of stones
in the lower right corner can be captured if White plays atb. E�ectively,
at the time when White puts down his stone atb, this stone also has no
liberty. This \suicide" is only allowed if the move itself removes the last
liberty of some other stones. These stones are removed from thegame by

3This rule e�ectively denies in�nite loops.
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the �rst rule and the capturing stone regains liberties. By the end of the
move, once White removes the black stones, the white stone atb has 2
liberties | at H1 and J2.

� The white group in the upper left corner has two liberties (coordinates A7
A9). To capture the group, Black would need to take both of theseliberties
away with a single move, but this cannot be done. Therefore, the white
group in the upper left corner is unconditionallyalive.

� To illustrate the ko-rule, lets have a look at the lower left of the �gure.
Suppose it is Black's turn and she captures the stone by playing atc.

Next, it is White's turn, but because of theko-rule, he cannot recapture the
black C2 stone by playing at D2 and so he has to play elsewhere. Because
this other play changes the position of stones on the board, he cancapture
the black stone the next time he plays.

De�nition. An eye of a group of stones is a liberty that is enclosed by stones of
one colour.

The group in the lower right corner of Figure 1.1 has one eye, the group in
the upper left corner has two eyes.

De�nition. A group of stones that has at least two eyes is calledalive | it
cannot be killed. There is no way for the opponent to capture the stones. On the
other hand, a group that can neither make two eyes, nor be rescued4 is dead.

The black group in the lower right of Figure 1.1 isdead, whereas the white
group in the upper left isalive.

Scoring and rulesets

The main objective players are trying to accomplish is to have more points than
the opponent and thus win the game. So far, we have only presented rules that
de�ne where the stones can be put. The scoring proceeds as follows:

De�nition. Territory scoring (Japanese scoring) | during the course of the
game, each player keeps the stones he has captured (these arecalled prisoners).
At the end of the game,deadstones are removed from the board. The dead black
stones are added to White's prisoners and vice versa.

The total number of points each player has equals the number of free intersec-
tions enclosed by his stones plus the number of his prisoners. Usually, White also
receives a compensation (usually6:5 points) for Black playing �rst, this compen-
sation is calledkomi .5

The player with more points wins the game.

Example of a �nished game: (see Figure 1.2)

� Because the area marked witha is enclosed by black stones, it is Black's
territory. There are 18 open intersections, so Black has 18 territory points
here.

4E.g. by connecting with a group which is alive or by capturing the enclosing enemy stones.
5By playing �rst, Black has the initiative in the beginning.
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� The area labelled withb is not completely enclosed by white stones, because
there is the black group of 5 stones marked withd. But since this group
does not havetwo eyes and there is no way for Black to make them, it
is regarded asdead. (For example, by playing at A8, White can always
capture the two Black stones at A7 and B7. If Black plays A8 in orderto
prevent this, White captures the 4 stones by playing B9.) Notice, that if
there was a black stone atc, the group would bealive. When White played
c he thereforekilled the group. In this situation (the �rst one to take the
point has the pro�t) we say that the c point is a vital point (of the black
group in the upper left corner). Usually, it is a good idea to play such points
before the enemy does.

So, White has 22 points of territory here (including the intersections under
the 5 dead black stones) plus 5 points for the black prisoners.

� Next, there are 2 intersections ate. Because they are not solely enclosed
by any of the players, these intersections are not counted as territory. We
call such intersectionsneutral points.

� Finally, there is the white group labelled withf in the bottom-right corner.
This group has two eyes (H2, J1) and is thus alive. White has another2
points of territory here.

� To sum up, Black has 18 territory points in the bottom-left corner.Because
he killed the Black's group in the upper left corner, White has 5 prisoners
plus 22 territory points for the upper part. White also has 2 points in
the lower-right corner. Finally, because Black was the �rst to play,White
receives a compensation of 6.5 points.

Together, Black has 18 points, while White has 22 + 5 + 2 + 6:5 = 35:5
points. White wins with a clear lead.

In the prior example, determining thestatus (whether it is alive or dead)
of the black group in the upper left corner was quite easy. It is not necessarily
always so. The disputes over statuses of groups are usually settled by resuming
the game and playing the situation out.

There are also certain situations involving groups of both players which are
neither alive nor dead. This situation is calledseki (dual life). The situation
occurs when groups of di�erent colors share some liberties and the�rst player to
�ll one of the shared liberties gets captured. Therefore, neitherplayer will play
there and neither group of stones will be captured. See Sensei's Library (2013i)
for a complex discussion of the topic.

It should be noted that there are other variations of the scoring and rules. For
example, under Chinese scoring, players get points forarea under stonesinstead of
the territory enclosed by the stonesas we saw here. Both scoring methods do not
di�er vastly, usually, the di�erence is at most 1 point. Refer to Sensei's Library
(2013h) for details.

Apart from the scoring method used, the rulesets may di�er in theirapproach
to the ko situations and other minor settings. However, the gameplay and strat-
egy remains almost the same. See Sensei's Library (2013g) for detailed overview
of di�erent rulesets.
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Figure 1.2: A �nished game.

1.2 Rating and Handicap Games

Even though the basic rules of the game are quite easy and even very small
children are able to absorb them, mastering the art of Go takes many years of
study. To compare strengths of di�erent players, a ranking system has been
devised. Traditionally, the ranks are divided intodan and kyu classes. The
dan classes are regarded asmaster ranks, kyu ranked players are regarded as
students.6 (Wikipedia, 2012)

The kyu scale spans from absolute beginners (20-kyu), to moderately skilled
players (1-kyu), the dan scale spans from 1-dan (directly above the 1-kyu) to
9-dan.7,8

In comparison with other games, most notably Chess, Go is unique in asense
that even players with di�erent skills can set up an even game. This is done
using so-calledhandicap stones. The weaker player can place down a certain
amount of stones before the game starts9 | so that he has an advantage to begin
with. This advantage balances the di�erence in strengths. The ranks are cleverly
scaled; the di�erence in rank is equivalent to number of handicap stones needed.

6Intriguingly, this ranking system originally devised for Go during the E do period in
Japan (Hall { Fairbairn, winter 2011b) has also been adopted in somemartial and �ne arts
of eastern origin.

7Professional players also use the dan ranks, but the scaling is a bit di�erent. Approximately,
the �rst professional dan (1-pro) is equivalent to amateur 7-dan. Historically the di�erence of
1 rank between two professional players was about 1/3 of a handicap stone. Nowadays however,
the pro-dan scale serves as an indication of achievements, ratherthan an exact comparison of
players' strengths. (Sensei's Library, 2013c)

8There exists a number of di�erent ratings, that are often not directly comparable to each
other. For example, the KGS (one of the popular online Go servers)3-kyu could play evenly
against European 7-kyu (the o�cial European rank, given by the European Go Federation).
Refer to (Sensei's Library, 2013f) for a deeper comparison and discussion.

9The positions of these stones are de�ned depending on their amount.
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For example, 10-kyu player should place �ve handicap stones against a 5-kyu
player for the chances of winning to be roughly similar. Also, when thehandicap
stones are in use, thekomi compensation is usually changed to 0.5 (to avoid a tie).

1.3 Important Concepts

The following lines present some important concepts of Go in a strongly simpli�ed
manner.

1.3.1 Gameplay

The way humans play Go has some characteristics. The usual game can be rough-
ly divided into three stages, opening (fuseki), middle game and endgame (yose).
This distinction is very rough and there are no precise boundaries. Sometimes,
the middle game �ghting occurs almost immediately after the start, sometimes,
the middle game is \skipped" altogether.

The opening sketches the main territories and war zones, optimally in line
with some high level strategy. The stones do not usually come in direct aggressive
contact with each other during the opening. Usually, the corners are occupied
�rst, because it is easiest to get territory here (the corner territory needs to be
enclosed only from two sides). After the corners, extending to the sides and then
into the center are next big moves.

The middle game is dominated by attack and defence. Players struggle to
reduce enemy territory, increase their own territory or otherwise gain an advan-
tage. Sometimes, a running �ght occurs | a group which is not locally alive runs
away towards friendly forces in order to connect with them and assure life.

The endgamephase begins once statuses of all groups have been more or less
determined. In the endgame, players seek to gain local advantage. In the �rst two
stages, it is usually critical to view the board globally (as groups in
uence each
other), while the endgame may usually be broken down to individual independent
plays (how to combine them and how to choose the proper play is however a thing
that must also be regarded globally).

1.3.2 E�ectiveness

In Go, the goal is to have more points than opponent. The player who safely
encloses more territory with fewer moves than the opponent wins.Therefore,
the e�ectiveness of one's moves is of utmost importance. This doesnot limit us
to enclosing territory directly. The player who needs less moves to stabilize his
group (make sure it is alive) can \spend" the remaining moves e.g. to attack
enemy groups, increase his own territory and so forth.

Shape

For example, the concept ofshape is an incarnation of this principle. Good
shaperefers to a formation of stones that has good tactical possibilities: space
for eyes, high number of liberties, possibilities of escaping, and so on. On the other
hand, bad shapemay easily be attacked, does not defend one's other weaknesses,

9



Figure 1.3: Shapes. White has a good shape, while black stones form the terrible
empty triangle.

etc. Figure 1.3 shows such shapes. The white stones show a typicalgood shape
(called the table shape). The white stones are connected, have a lot of liberties
and have a chance of forming an eye in the middle. The black stones do, however,
form a bad shape (the notoriously known empty triangle). This is a formation
of 3 stones that has the fewest liberties, not much eye-space andcan usually be
attacked pro�tably. Black will need to invest further stones to make these stones
useful.

Sente/Gote

Another really important concept is the notion ofsente and gote . We say that
a move (or a series of moves) issente if the opponent has to respond to it or
something bad happens to him (the burden of not responding is not worth the
initiative taken by not responding). On the other hand, when a player plays agote
move, the opponent does not have to respond (the burden of notresponding is
relatively small), or the player who started has to respond to the opponent's
response. Of course, the sequence might take more moves. The important thing
is that with sente play, the player retains the initiative after the sequence ends.
With gote play, he does not.

For example, Figure 1.4 shows an example endgame situation. Black descend
to edge ata is a sentemove, for if White does not protect atb, Black b kills the
white corner group by destroying its eye. Later, Black can utilize the stone at
a to reduce white territory by playing c, possibly again insente. On the other
hand, if White decides to protect by playing ata before Black does so, he loses
the initiative, because Black is not forced to reply. Whitea is thus a gote move.

The sente play keeps the initiative, the gote play gives it to the opponent.
This does not mean thatgote is necessarily a bad move. It may be the case that
the player has nosenteplay anymore, or that by playing thegote move a player
neutralizes a bigsentemove of the opponent. Keeping an eye on what moves are
senteor gote is one of the most important things a player needs to learn in order
to improve. Keeping the initiative, making pro�ts in sente, preparing ownsente
plays while neutralizing opponent's is crucial in Go.

1.3.3 Balance of Power

Beyond the relatively simple local goals (such as keeping one's stonesin a good
shape), players usually follow some deeper strategy. For example,someone who
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a bc

Figure 1.4: Sente and Gote. Black descend ata is sente, Blackb would kill the
white corner group. Later, Black can playc.

likes to have secure territory will probably keep his stones near thesides and his
corners. Usually, moves played on third line (from the edge) are hard to invade,
so they guarantee relatively secure piece of territory. By playing on a larger
scale (playing higher, and perhaps less safely) his opponent might however sketch
a much bigger area, which if turned into real territory would guarantee him the
victory.

Also, there is the concept ofouter in
uence. Player might have a strong wall
of stones facing the center, which | if used wisely | will provide invalua ble help
in the middle game �ghts and indirectly provide score points. For example, if
you have a strong position right where the unstable enemy's group islooking for
support, then you managed the situation well, remember that points are forboth
dead enemy stones and enclosed intersections.

To sum up, player should try to balance the in
uence with territory, thick-
ness(thick positions have little or no weaknesses) withspeed(fast positions have
potential to expand and secure large territories, yet they inherently have weak-
nesses) to maximize the gain and win the game. There exist whole anthologies of
books dealing with these concepts, we have just presented a small,shallow part
of it to illustrate the complexity of the matter. If you want to learn more, the
Sensei's Library (2013a) is a good place to start.

11



2. Methodological Approach

2.1 Central Problem

We shall now formalize the problem we are dealing with. Suppose we have a set of
playersP and for each playerp 2 P, we have a sample ofp's games,Gp. Moreover,
suppose that for each playerp we also have an externally given informationyp 2 R.
For example, this might bep's strength. The central question is:What is the
relation between gamesGp and the external information yp? The motivation is
that understanding this relation may help with the general understanding of yp.
In the example case whereyp is strength of playerp, this has obvious importance
| it might help a player to become stronger, deepen our understanding of Go,
or just improve the performance of Go playing programs.

The methodology in this work deals with a slightly weaker questions:What
can we deduce from gamesGp? and How well can we predict the informationyp

supposing we knowGp? We approach these questions by evaluating the gamesGp

on a per-move basis and applying machine learning algorithms to the evaluations.
Generally, we consider the problem not to be an easy one. A crucial principial

obstacle is illustrated by a Go proverb1: \If you want to improve, do not look
on what moves do the professionals play, butwhy do they play them." In some
situations a particular move is perfect, other times the same move isno good
| without reasoning about why are the moves played, we cannot hope to fully
tackle the problem. Moreover, there are many other factors hindering the process,
to name a few:

� Often, we are dealing with small samples of data.

� The set of gamesGp may be taken from a larger interval of time, during
which the yp might have changed considerably.

� The uniqueness of every single game introduces inhomogeneities intothe
data.

� Games might have di�erent time setup. For example, very fast\blitz"
games (time for one move is very small) do not make it possible to examine
the positions thoroughly; these games are mainly played by intuition.

� During online games, players might not be concentrated fully on eachgame,
resulting in unstable performances. For example, this is the case when
opponents are from di�erent timezones (for instance, one playeris playing
in the morning, the other one in the night) as noticed in (Sensei's Library,
2013f).

2.2 Processing Overview

The processing pathway presented in this work follows the structure from our
previous paper (Baudi�s { Moud�r��k, 2012). The pathway has two logical parts

1See (Sensei's Library, 2013e) for more proverbs.
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y0
Gp

vpFE

For training data.

ML

Figure 2.1: Simpli�ed overview of the processing of data. Player's games Gp

are processed usingFeature extractionpart (FE). The resulting feature vector vp

serves as an input for theMachine learning part (ML) which outputs predicted
y0. For players from the training dataset, the machine learning methods learn
from vp and the external informationyp.

| feature extraction step, where we transform a set of player's games into an
evaluation vector, and machine learning, where we learn the dependency between
evaluation vectorsv of di�erent players and the information y we study in each
particular dataset.

Dataset

Dataset is a set of tuples where the �rst element represents games Gp of a play-
er, and the second element represents the external informationyp 2 R we are
studying.

D = f (GCi ; yi ); : : :g

Because a game is played by two players and we need to distinguish between
them, each game is accompanied with color of the player of interest (p's color).
To emphasize this, we useGCp instead ofGp. The GCp is a set of tuplesGCp =
f (game1; color1); : : :g (we will call it a set of colored gamesof player p).

Feature extraction

The goal of the feature extraction part is to make a complex evaluation v 2 Rf

out of a set of colored gamesGC. The process is detailed in Chapter 3.

Machine learning

The machine learning part tries to capture the dependency between evaluation
vectorsvp and the external informationyp. Details are given in Chapter 4.
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3. Feature Extraction
This chapter presents a methodology for extracting information from a set of
colored gamesGC (see Section 2.2 for de�nitions).

In some of the methods below, we will need a set of games, we call itA,
that reasonably represents all the games from the datasetD. By a reasonable
representation we mean that the setA has the same (or almost the same) dis-
tribution of moves and other \events" of interest. All the games from D serve
ideally, typically some reasonably large subset ofD performs well, while saving
computational resources.

The feature extractors basically map a set of colored games to a feature vector:

De�nition. A feature extractor is a function

f : f (GC) = v

whereGC is a set of colored games, andv is the resulting feature vector.

In the sections to come, we will separately present feature extractors f we have
used. The machine learning methods in Chapter 4 will use the concatenation of
these di�erent features.

In the following text, we distinguish betweenraw features | the per-move
features matched by Pachi Go engine (see the next section) | andnormal features
| results of applying aforementioned feature extractorson a set of colored games.
The features are computed using the information from theraw features. Also,
any single elementvi (of a feature vectorv) is called anattribute .

The implementation details are given in Appendix B.

3.1 Raw Features and Pachi

To extract the raw features, we have used the Pachi Go engine (Baudi�s et al.,
2012). Apart from being quite a good-performing Go bot, Pachi engine has
a replay mode, that scans a single game on a per-move basis. For each move, it
outputs a combination (calledpattern) of several raw features (key-valued pairs).
These raw features include:

� atari 
ag | whether the move put enemy stones in atari,

� atari escape 
ag | whether the move saved own stones from atari,

� capture | number of enemy stones the move captured,

� contiguity to last move | the gridcular distance (presented below) from
the last move,

� board edge distance | the distance from the nearest edge of the board,

� spatial pattern | con�guration of stones around the played move.

14



Figure 3.1: An example spatial pattern of size 6. The dashed parts of the goban
are not regarded.

The spatial patterns are always normalized (using a dictionary, below) to be
Black to play and to be invariant under rotation and symmetry. For each move,
spatial neighborhoods of sizes 2 to 6 in gridcular metric are matched.

For example, the following pattern

(border : 2; cont : 5; spatial : 88)

has three raw features. The �rst one, the distance from the board edge is 2,
which means that the move is on the third line. The contiguity featuresays that
the gridcular distance from the last move is 5. From Figure 3.2, we cansee that
distance 5 is the horse move approach (both Go and Chess have what is called
a horse move, with the same L-shape).

The last feature | spatial pattern | gives index to the spatial dictio nary
(below), the particular pattern for this example is shown in Figure 3.1. From the
�gure, we can see that the move was probably some low counter-extension

(or invasion) to answer .

Gridcular metric

Gridcular metric approximates a circle on the square grid of a goban.It is de�ned
by the formula:

d(x; y) = j�x j + j�y j + max( j�x j; j�y j)

The gridcular metric has been successfully applied for pattern-matching in
e.g. (Stern et al., 2006; Coulom, 2007). The gridcular distance is illustrated in
Figure 3.2.

Spatial dictionary

Before running the engine on a per game basis, the engine is run on a large
number of games (theA set) to create a dictionary of spatial patterns that have
occurred at leastN times, N chosen so that the number of spatial patterns is
su�ciently large. The raw spatial feature matcher uses this dictionary to look
for spatial patterns (and their rotations, color inversions if Whiteis to play,
symmetrization) during the matching.

15



0

2

22

2

33

33

4

4

4

45

5

5

5 5

5

5

56

6 6

6

6

6

6

6 7

7

7

77

7

7

7

8

88

8

8

88

8

99

99

Figure 3.2: The gridcular metric on a 7� 7 grid. The numbers show the grid-
cular distance from the center, the background lightens with increasing distance.
Inspired by (Stern et al., 2006).

3.2 Pattern Features

This section presents apattern feature extractor that tries to capture a distribu-
tion of patterns among the colored gamesGC. In this case the pattern is a tuple
consisting of the atari 
ag (and atari escape 
ag) and the spatial pattern raw
features. Other raw features are ignored because the use of more raw features
causes a big granularity of the data | a lot of patterns that are not played often.

This feature extractor counts the number of occurrences of the top N most
played patterns from GC. The counts are then normalized using one of the
normalization schemes. The process is detailed in Algorithm 1.

We presented this feature in (Baudi�s { Moud�r��k, 2012); this work extends it
slightly by testing two more normalization schemes (independent andproportion-
al) in addition to original linear normalization1.

Normalization

The normalization step in Algorithm 1 (line 11 in the pseudocode) is veryimpor-
tant to maintain the invariance under number of games in theGC. Without it,
the values of~v would increase proportionally tojGCj. To alleviate this, we use
one of following scaling schemes:

� independent normalization | ~v  ~v=jGCj,

� proportional normalization | ~v  ~v=sum(~v),

� linear normalization | min (~v) is mapped to � 1, max(~v) to 1, the rest
is mapped linearly into the interval (� 1; 1).

1In the (Baudi�s { Moud�r��k, 2012), we also used what could be calle d logarithmic normal-
ization but it did not perform well; see the paper for details.
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Algorithm 1: Pattern Feature Extractor
input : set of colored gamesGC, number of top patternsN , set of all

gamesA
output : feature vector~v

1 T opP atterns  PachiGatherTopNPatterns( A, N ) ;
2 ~v  Zeros( N ) ;
3 foreach (game; color) in GC do
4 foreach pattern in PachiGatherPatterns( game, color) do
5 if pattern in T opP atterns then
6 i  IndexOf( pattern, T opP atterns) ;
7 ~v[i ]  ~v[i ] + 1 ;
8 end
9 end

10 end
11 ~v  Normalize( ~v) ;
12 return ~v

3.3 Local Sente (Gote) Sequences

Besides the pattern feature, we have implemented some higher level features that
try to capture deeper concepts within the data. The �rst one of them deals with
sente and gote plays. We have discussed (see Chapter 1.3.2) that asente play is
a move the opponent has to respond to or something bad happens to him. Often,
the reply is local, as we have seen in Figure 1.4.

Assuming that sente and gote sequences are always local (assumption of lo-
cality of replies) and that all local plays are part of somesenteor gote sequence
(assumption of exclusivity) is the basis of a method we have devised to make
statistics of senteand gote play within a game.

Certainly, the assumption of the locality of replies does not always hold. Some-
times, a response to asente move has to be played on the other side of board.
Imagine, for example, that a large white group has one eye and it hasonly two
possibilities to make the second eye. If Black neutralizes one of them, White
should not hesitate to make the second eye or his whole group dies. Because the
two possible eyes of White's group might be distant from each other,the Black's
play that destroyed one of the possible eyes might not be answeredlocally, though
it certainly is a sentemove.

Neither the second assumption always holds. Two moves that are played
next to each other might be separategote plays, instead of a part of one larger
exchange.

Even though the assumptions are not always true, the resulting feature vector
proves to be useful, as detailed in Chapter 5.1.2.

In the following, we view a gameg as a sequence of moves:

g = ( m1; m2; m3; : : : ; mlast )

We consider thepassto be a special kind of move. Now, we shall formalize the
concept of locality within the g sequence.
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De�nition. (All the following de�nitions are considered to be within the g se-
quence.)

We say that a movemi from g is ! -local if its gridcular distance from the
previously played movemi � 1 is less or equal to! .

We say that a sequenceM i;j = ( mi ; mi +1 ; : : : ; mj ) for any 1 � i � j � j gj is
! -local if 8x; i < x � j , movemx is ! -local.

We say that an! -local sequenceM i;j is maximal if it cannot be extended into
! -local M 0 by adding movemi � 1 or mj +1 .

We say that a maximal! -local sequenceM i;j is senteif color(mi ) 6= color(mj ).
Similarly, the M i;j is said to begote if color(mi ) = color(mj ). The color(m) is
a color of a player who played the movem.

The passis not considered to be! -local.

Lemma 1. For a �xed ! , the game sequenceg can be covered by a set of disjunct
maximal ! -local subsequences.

Proof. It is obvious that if we have two neighboring! -local sequencesM i;j and
M j +1 ;k such that also the movemj +1 is ! -local, we can merge the two sequences
into M i;k which is also! -local.

Therefore, if we start by splitting the g into jgj disjunct ! -local subsequences
M i;i of size 1, we obtain the cover by repeatedly applying the merge (if it ispos-
sible) on neighboring pairs of these sequences until no more mergesare possible.

The �nal set of sequences,Cover, has only ! -local sequences because the
merge operation preserves the locality and the initial splitsM ii were ! -local;
they are maximal, because no more merges are possible and they area cover
because the initial set was a cover and no elements are skipped during the merge
operation.

Based on theCover set, we can easily count the approximated statistics of
senteand gote plays as Algorithm 2 shows. The functionIsSente is a predicate
to test if the maximal ! -local sequence issente as de�ned above. The gridcular
distance to determine the! -locality is taken from the contiguity raw feature.

3.4 Histograms Features

This section presents two histogram-based feature extractorsthat focus on cap-
turing distributions of certain events within the games.

3.4.1 Border Distance

The task of the �rst histogram feature is to capture the distribution of distances
from the board edge. In Chapter 1.3.3, we have brie
y mentioned that in the
opening, playing on third line generally stresses secure territory, while higher lines
(e.g. the 4th) stress in
uence. Frequently, the di�erence of oneline has a huge
impact on the 
ow of the game. We could do a simple statistics of the border
distance, but because the game has stages that di�er signi�cantlyfrom each other
(see Section 1.3.1), one has a feeling that some sort of di�erentiation based on
the game stages should be used. One simple heuristic to tell the current stage is
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Algorithm 2: Local Sequence Extractor
input : set of colored gamesGC, locality threshold !
output : feature vector~v

1 S  0;
2 G  0;
3 foreach (game; color) in GC do

/* The Cover function returns the Cover of game from the
proof of Lemma 1 with respect to ! . */

4 foreach M in Cover(game, ! ) do
/* We ignore opponent's sente and gote sequences. */

5 if M [1] == color then
6 if IsSente( M ) then
7 S  S + 1;
8 else
9 G  G + 1;

10 end
11 end
12 end
13 end

/* We output the average number of Sente and Gote sequences
per game, and also their average difference. */

14 ~v  (S; G; G � S)=jGCj;
15 return ~v
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the number of the current move. (For instance, we can roughly say that �rst 10
moves are usually the early opening.)

We have used a two-dimensional histogram in this feature extractor. The
�rst dimension is speci�ed by the move's border distance, the second one by the
number of the current move. The size of each dimension is given by intervals
dividing the domains. For example, if we useByMoves = fh1; 10i ; (10; 1 )g for
the move coordinate (motivation is to distinguish between opening | say �rst 10
moves | and the rest of the game), and ByDist = fh1; 3i ; h4; 1 )g (distinguish
playing on �rst three lines to stress territory from playing higher to stress the
in
uence) to split the border distance dimension, then we obtain a histogram of
total jByMovesj�j ByDist j = 4 elements. In the end, the histogram is normalized
to establish invariancy under the number of games scanned (by dividing the
histogram elements byjGCj).

The pseudocode is shown in Algorithm 3. The functionIndexOfElement
(element, Intervals ) returns the index of interval int 2 Intervals , such that
element 2 int .

Algorithm 3: Border Distance Histogram Extractor
input : set of colored gamesGC, an ordered set of disjunct intervals

ByDist , an ordered set of disjunct intervalsByMoves
output : feature vector~v

1 V  Zeros( jByDist j, jByMovesj) ;
2 foreach (game; color) in GC do
3 foreach move in gamedo

/* We ignore the opponent's moves. */
4 if ColorOf( move) == color then
5 bdist  GetBorderDistance( move) ;
6 X  IndexOfElement( bdist, ByDist ) ;
7 movenum GetMoveNumber(move) ;
8 Y  IndexOfElement( movenum, ByMoves) ;
9 V[X ][Y]  V[X ][Y] + 1;

10 end
11 end
12 end

/* Serialize the normalized matrix into a vector. */
13 ~v  RowWise(V=jGCj) ;
14 return ~v

3.4.2 Captured Stones

The second histogram feature re
ects the distribution of captured stones in dif-
ferent game stages. The motivation behind this is the fact that onewould expect
generally di�erent numbers of captives in the opening | where the stones are not
usually in direct aggressive contact (see Section 1.3.1) | and in the endgame,
where e.g. small captures are quite common.

The methodology here is very similar to the previous feature extractor. The
�rst dimension distinguishes between the game stages, the seconddimension has
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a �xed size of three bins. Along the number of captives of the playerof interest
(the �rst bin), we also count the number of his opponent's captives(the second
bin) and a di�erence between the two numbers (the third bin). See Algorithm 4.

Algorithm 4: Captured Stones Histogram Extractor
input : set of colored gamesGC, an ordered set of disjunct intervals

ByMoves
output : feature vector~v

1 V  Zeros( 3, jByMovesj) ;
2 foreach (game; color) in GC do
3 foreach move in gamedo
4 if ColorOf( move) == color then
5 X = 0 ; /* The player. */
6 else
7 X = 1 ; /* The opponent. */
8 end
9 movenum GetMoveNumber(move) ;

10 Y  IndexOfElement( movenum, ByMoves) ;
11 capt  GetNumCapturedStones(move) ;
12 V[X ][Y ]  V[X ][Y ] + capt;
13 V[2][Y ]  V[0][Y ] � V [1][Y ];
14 end
15 end

/* Serialize the normalized matrix into a vector. */
16 ~v  RowWise(V=jGCj) ;
17 return ~v

3.5 Win/Loss Statistics

Finally, we came up with a pair of very simple features which make statistics
of wins and losses and whether they were by points or by resignation2. (When
player resigns, he declares his loss without �nishing the game.)

For example, quite a lot of weak players continues playing already lostgames
until the end, mainly because their counting is not very good (they do not know
there is no way to win), while professionals do not hesitate to resign ifthey think
that nothing can be done.

For the colored games ofGC we count how many times did the player of
interest:

� win by counting,

� win by resignation,

2Sometimes | mainly in online games | players might also lose on time. In rar e cases, the
game might as well end as a tie or be un�nished or forfeited. We disregard such games in this
feature because the frequency of these events is so small it wouldrequire a very large dataset
to utilize them reliably.
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� lost by counting,

� and lost by resignation.

The result of the �rst feature extractor are these four numbers, divided by jGCj
to maintain the invariancy under number of games inGC.

Furthermore, for the games won or lost by counting, we count theaverage
size of the win or loss in points. Similarly, these two numbers in a vectorform
the output of the second feature extractor.
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4. Machine Learning
This chapter presents machine learning methods we have used throughout this
work. Most of the methods are well-documented in literature, so weonly give
a brief overview here.

In this chapter, suppose we have a set of data

T r = f (x1; y1); : : : ; (xN ; yN )g; 8i : x i 2 Rp; yi 2 R

and we want to �nd a function r which is able to predict the valueyi from x i

with a reasonable accuracy and can generalize this dependency to unseen pairs.

De�nition. A regression function is a function

r : Rp ! R

where p is a dimension of space of vectors ofpredictor variables. We also call
the domainRp the feature space. The codomainR is called a space ofdependent
variables.

The machine learning methods presented here are regarded aslearners. For
a given data T r, the learner should output a regression function(also called
predictor) which performs the regression of the dependent variable, as learned
from the data.

De�nition. A learner is a function

l : T ! R

where T is a space of all training datasets, andR is a space of allregression
functions.

Of course, someregression functionsperform better than others. Mainly, this
is because eachlearner has di�erent (inherent) assumptions about the form of the
function it is looking for; we call this the inductive bias (of the learner and the
underlying model). For example, linear regression assumes that thedependency
between predictor variables and the dependent variables is linear. Often, we
deal with data where the underlying dependency and properties ofthe data are
unknown, so it is hard to say whether assumptions of a particular model are right.
To overcome this problem, usually a bunch of models is tried and the best one is
chosen.

Another approach, the one we use in this work, is not to choose thebest, but
rather try to combine the di�erent approaches to create one higher-level method.
Because di�erent methods have di�erent biases, they might be ableto capture
di�erent dependencies in the data. If we combined the methods (base learners)
usefully, we could get better performance than with the \use the best learner"
approach. We call this theensemble meta-learning.

De�nition. A meta-learner is a function

ml : P(L ) ! L

whereL is a space of all learners andP denotes a power set.
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A meta-learner takes a set of learnersBl and returns a learner, possibly a re-
sult of aggregation of learners inBl .

The di�erent base learnersare presented in Section 4.1. Theensemble meta-
learners are shown in Section 4.2, and in Section 4.3 we detail the process of
choosing the right base-learners into the ensemble. Finally, Section4.4 discusses
evaluation of learners and feature extractors and procedures for comparison of
their performances.

The implementation details are given in Appendix B.

4.1 Base Learners Overview

4.1.1 Mean Regression

The mean regressionis a very simple method, which we use as a reference for
comparing performances of other learners.1 It simply outputs the mean of they's
in the training set and is thus constant regardless of the inputx.

mean(x) =
1

jT r j

X

(x0;y0)2 T r

y0

4.1.2 Neural Networks

Output

Input

Hidden

Figure 4.1: Illustration of the layered
topology of a simple feed-forward
neural network. The labels mark dif-
ferent layers.

Arti�cial neural networks (NN) are stan-
dard technique used for function approx-
imation. The idea behind this model is
inspired by the function of biological neu-
ral tissues. The arti�cial neural networks
are known for their ability to �nd depen-
dencies between inputs and outputs in the
training data and generalize this knowl-
edge to previously unseen inputs. This
section presents a very crude overview of
the method, see the monograph by Haykin
(1998) to learn more.

The arti�cial neural network is a net-
work consisting of interconnected compu-
tational units called neurons. Each neuron
has several inputsx j and one outputy. For
each input x j , the neuron has a weightwj ,
which is incorporated into the computation as follows:

y = f (
X

j 2 J

wj x j )

where thef is a so-called activation function, for instance the sigmoid2.

1A random regression is also quite frequently used for this purpose.
2A special case of the logistic function� (x) = (1 + e� rx )� 1, where r controls growth of the

function.
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There are many topologies (de�ning the connections) of thearti�cial neural
networks in use. We have used the typicalfeed-forwardnetwork topology, where
neurons are organized in layers (oneinput layer, arbitrary number of hidden
layers, oneoutput layer). The layers are ordered so that the input to each layer
only comes from the previous layer, as shown in Figure 4.1. The input layer has
the same dimension as the input data, the outputs of these neurons are set to be
the input data. Computation of other units proceeds by layers according to the
formula above. The activity of the output layer is said to be the result of the
computation.

Training

To be able to approximate the target function, the weights of the neuronswij

need to be set up properly. This is a typical optimization problem, we are trying
to minimize the error � on the training data. In this work, we use the iterative
�rst-order gradient-descend method called RPROP (Riedmiller { Braun, 1993).
Usually, the maximal number of iterations is bounded by a limit,max.

4.1.3 k-Nearest Neighbor Regression

The k-nearest neighboralgorithm (Cover { Hart, 1967) is a commonly used ma-
chine learning tool. The assumption of this model is that we can deduce the
dependenty by looking at vectors from the feature space that are close to thex.

De�nition. For a �xed k and x,
let the Nb = f x0

1; : : : ; x0
kg denote a set ofk closest vectors tox from the T

with respect to some metric� ;
let D be a vector of distances, such thatD i = � (x; x0

i );
for each x0

i , let y0
i be the associated dependent variable from the training set

T.

For a given x, the idea is to �nd the nearest k vectors (the Nb set) from
the training set, and then estimate the dependent variabley from the associated
y0

1; : : : ; y0
k .

In this work, we have used the Manhattan (p-1) and Euclidean (p-2) distances
as � . To infer the y, we de�ne the model to be:

y =
P k

i =1 w(D i )y0
iP k

i =1 w(D i )

for some weighting functionw. We have used the inverse of the distance
betweenx and the particular neighbor instance:

w(D i ) = 1 =D�
i

where� is a parameter specifying the e�ect of increasing distance. When the�
is equal to zero, we obtain the averaging scheme, where the weights do not depend
on the distanceD i | all the k neighbors are valued equally. With increasing� ,
the x0

i instances closer tox are preferred over more distant neighbors. When the
� goes to in�nity, the method essentially becomes one-nearest neighbor.
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4.1.4 PLS

The family of partial least squares(PLS) methods assumes that the observed
variables can be modelled by means of a few latent variables (their number is
speci�ed by a parameterl). The method projects the data onto this latent model
in a way that minimizes error. The process is somewhat similar to Principal
Component Regression.

For a good overview, see the work by Rosipal { Kr•amer (2006).

4.2 Ensemble Learners

In the introduction of this chapter, we have discussed that sometimes, a com-
bination of learners can have better performance than the \winner takes all"
approach. In practise, the three most used families of ensemble learning methods
are bagging, boosting and stacking. In this work, we have experimented with the
bagging and stacking. These are detailed in the rest of this section.

4.2.1 Bagging

Bagging3 is a simple ensemble method introduced by (Breiman, 1996). The idea
in bagging is to train a particular base learnerbl on di�erently sampled data
and aggregate the results. The method has one parametert which speci�es the
number of the data samples. Each of them is made by randomly choosing jT r j
elements from training setT r with repetition . The base learnerbl is trained on
each of these samples. The regression simply averages results from the t resulting
models.

Breiman (1996) discusses, that this procedure is especially usefulfor learners
bl which are unstable | small perturbations in the data have big impact on
the resulting model. Aggregating the bootstrapped models essentially introduces
robustness to such models. Examples of learners where the bagging is bene�cial
are neural networks (where over�tting is often a serious problem) and regression
trees (especially variants without pruning) | Random Forests presented beneath
are essentially bagged tree learners.

On the other hand, it needs to be said that bagging can worsen the perfor-
mances of learners that are stable.

4.2.2 Stacking

The stacking (or stacked generalization) is a more sophisticated approach. The
original idea was pioneered by Wolpert (1992). The method is basicallya two
level hierarchical model of learners with a clever scheme for training. The �rst
level is composed by an ensemble of (possibly di�erent) learners. The second
level is a single learner which aggregates guesses from the 1st levelmodels and
outputs the �nal prediction. Figure 4.2 shows the topology.

The training dataset is divided into smaller parts (by cross-validation, see
Section 4.4.1). The 1st level learners are trained on some of them and their
generalizationbiases are measured by testing their performance on the rest. The

3The name bagging stands forbootstrapped aggregating .
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2nd level learner learns to correct these | it learns what the correct output
is, given what the 1st level predictors output. Algorithm 5 hopes tomake the
procedure clear.

Having di�erent base learners often proves to be e�ective. The performance
of stacking is usually better than the best of the base learners on its own. It is not
the case, however, that having badly performing learners in the ensemble does
not worsen the performance. Choosing the right set of 1st level learners is very
important if we are to attain the best performance, as is the choiceof the 2nd
level aggregating learner and the number of folds for the cross-validation step.
We discuss this matter in Section 4.3.

1st Level

2nd Level

Input

A B C D

E

Figure 4.2: The topology of the stacking ensemble method.A , B , C and D are
the level 1 learners,E is the level 2 learner.

Algorithm 5: Stacking
input : an ordered set of 1st level learnersensemble, a level 2 learnerl2,

training data T r, number of foldsF olds
output : regression functionf

/* Training set for the level 2 learner. */
1 L2T r  fg ;
2 foreach (T r0; T s0) in CrossValidation( T r, F olds) do

/* The level 1 learners trained on split T r0. */
3 L1  (ensemble0(T r0); : : : ; ensemblen (T r0));
4 foreach (x0; y0) in T s0 do

/* Responses of level 1 predictors to unseen x0 and the
real reply y0. */

5 L2T r  L2T r [ f ((L10(x0); : : : ; L1n (x0)) ; y0)g;
6 end
7 end

/* Train the level 1 learners on the real data. */
8 L1  (ensemble0(T r); : : : ; ensemblen (T r));

/* Train the level 2 learner on the prepared data. */
9 L2  l2(L2T r);

10 return Compose(L1, L2) ;
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4.2.3 Random Forests

Random Forests(Breiman, 2001) utilize an ensemble of tree learners to predict
the dependent value (for an overview of the regression trees, see (Breiman et al.,
1984)).

Each tree from the forest (of sizeN ) is trained on an independently chosen
subset of training data, exactly as the bagging in Section 4.2.1 does.

However, there is one tweak of the process of learning one tree. During each
training step a random subset of attributes is chosen, and the tree node is split
on the best attribute of this subset. See the Breiman's paper for details.

The aggregation step is the same as in the bagging, simply averaging the
outputs of the trees in the forest.

4.3 Choosing the Best Stacked Ensemble { Ge-
netic Algorithm

We have discussed that ensemble learning might be bene�cial in termsof per-
formance. For stacking, it is desirable to form the ensemble out of diverse base
learners. The problem however is, how to choose the learners into the ensemble.
This becomes apparent once one tries to hand-tune the parameters of di�erent
base-learners, �nd the best combination of them and �nd the bestaggregating
2nd level learner.

We have used a simple genetic algorithm (GA) to search the space of possible
ensembles for the stacking. Genetic algorithms are an universal optimization tool,
see (Whitley, 1994) for a good tutorial. The general procedure is iterative. In each
iteration, individuals (candidate solutions) are evaluated using a�tness function
and an intermediate population is formed by randomly choosing individuals, with
probability proportional to the �tness (roulette selection). From this intermediate
population, the population for the next step is taken by making pairwisecrossover
operation and mutation on the newly formed individuals.

In the text below, we operate with a set of base learnersBL , from which we
choose the learners into the ensemble. We should note that the setof base learners
BL is not strictly limited to learners we have listed as base in Section 4.1 | weuse
both di�erently parameterized base learners and various bagged learners (neural
networks and forests).

We have used a very simpleencoding for an individual . An individual is
a triple of (I; F olds;~v). The �rst two values I and F olds de�ne the 2nd level
learner. I is the index of the 2nd level aggregating learner inBL and F olds is
the number of folds for the stacking procedure. The vector~v of sizejBL j marks
a subset ofBL that forms the ensemble:~vi = 1 if the base learnerBL i belongs
to the ensemble;~vi = 0 when it does not.

We have used two independentmutations to modify the individuals. Firstly,
with probability P mM , we either changeI to any of 1: : : jBL j, or we change the
number of F olds to 2 : : : 6, (MutateMin the pseudocode). Whether we changeI ,
or F olds is decided using a further random coin toss. Secondly, with probability
P mv a random positioni in v is selected and the bitvi is swapped, (MutateV in
the pseudocode).
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The crossover operation of parentsP = ( I; F olds;~v) and P0 = ( I 0; F olds0; ~v0)
selects a random positioni 2 f 1: : : jBL jg and outputs the following tuple

(I; F olds; (v1; : : : ; vi ; v0
i +1 ; : : : ; v0

jBL j))

as the new individual. Please note that the indexI (and number of F olds) of
the 2nd level learner is taken from the �rst parentP. This is compensated for by
the fact that crossover is always performed in pairs (lines 8 { 9 in Algorithm 6).

The �tness function we have used is inversely proportional toRMSE error
of the resulting stacked ensemble.

Also, to make sure we do not lose the best solution, we have used elitism,
which brings the top E individuals unchanged into the next generation.

Algorithm 6: Genetic Algorithm for �nding optimal stacking ensemble
input : size of the populationS, size of the eliteE, probabilities of

mutation P mM and P mv, maximal number of stepsMax
output : The best individual.

1 P op RandomPopulation(S) ;
/* The best individual so far. */

2 Best  fg ;
3 foreach iteration in 1: : : Max do
4 evaluation  Fitness( P op) ;

/* P I is the intermediate population. */
5 P I  RouletteSelection( P op, evaluation) ;

/* P N is the intermediate population after Crossover. */
6 P N  fg ;
7 foreach i in 1: : : (S � E)=2 do
8 P N  P N [ Crossover( P I [2 � i ], P I [2 � i + 1]) ;
9 P N  P N [ Crossover( P I [2 � i + 1] , P I [2 � i ]) ;

10 end
/* Save the best individual. */

11 Best  TakeTop(P op, evaluation, 1) ;
/* Top E best continue unchanged. */

12 P op TakeTop(P op, evaluation, E) ;
13 foreach individual in P N do
14 if Rnd(0,1) < P m M then
15 individual  MutateM(individual ) ;
16 end
17 if Rnd(0,1) < P m v then
18 individual  MutateV(individual ) ;
19 end
20 P op P op [f individual g;
21 end
22 end
23 return Best;
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4.4 Evaluating Learners

To compare performances of di�erent regression functions (learners), we need
a reliable metric. The goal is to estimate the performance of a particular regres-
sion function on real unseen data. We can estimate this performance by splitting
the data we have into parts that are only used for training (T r) and testing (T s).

4.4.1 Cross-Validation

Cross-validation is a standard statistical technique for estimationof parameters.
The idea is to split the data into k disjunct subsets (calledfolds), and then
iteratively compose the training and testing sets and measure errors. In each of
the k iterations, k-th fold is chosen as the testing data, and all the remainingk � 1
folds form the training data. The division into the folds is done randomly, and
so that the folds have approximately the same size (in cases where the number
of samplesjD j is not divisible by k, some folds are slightly smaller than others).
Please note that each sample from the data is a part of the testing fold exactly
once (it is part of a training setk � 1 times).

Refer to (Kohavi, 1995) to learn more.

4.4.2 Error Analysis

To evaluate a regression functionr reliably, we are looking for a robust error
measure. Commonly, themean square erroris used:

MSE (r ) =
1

jT sj

X

(x;y )2 T s

(r (x) � y)2

Where r is trained on the training data T r. The MSE is an estimate of
variance of the population of errors.

In this work, we have used theMSE 's square-root,RMSE , which is an esti-
mate of standard deviation of the errors. Because the square root is a monotoni-
cally increasing function, sorting the learners based onMSE and RMSE yields
the same order. Moreover, theRMSE has a clear interpretation | under the
assumption of normality of the distribution of errors with zero mean, con�dence
intervals on precision of the regression functionr can be given.

P(� � � y � y0 � � ) = �(1) � �( � 1) � 0:6827

P(� 2� � y � y0 � 2� ) = �(2) � �( � 2) � 0:9545

P(� 3� � y � y0 � 3� ) = �(3) � �( � 3) � 0:9973

Where � is the cumulative distribution function of the standard normal dis-
tribution. For instance, we can say that with the probability of 95%,a prediction
y0 = r (x) for a feature vectorx is within a range of 2� from the true value y. Of
course, these estimatesonly hold when the training and testing data are sampled
reliably (e.g. with many-fold cross-validation)and even more importantly, when
the dataset re
ects the real distribution of the problem's data.
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4.5 Evaluating Features and Attributes

We have devised a number of features that try to capture information from a set of
games. Each of them is based on di�erent rationale and assumptions. A numerical
measure of their performance (feature evaluation) is bene�cial from two main
points of view.

Firstly, evaluating the features tests whether (and how much) dothe particular
assumptions hold. Apart from being useful on its own, knowing whatcan be
assumed about data gives directions for further improvement. The second, rather
practical, bene�t is that this feature evaluation allows to search for the best
parameters of the feature extractors.

Besides the features as a whole, we can also analyze the performance of par-
ticular attributes 4. An analysis of attributes might be useful in numerous appli-
cations. For instance, if we �nd out that there is a linear dependency between
attribute of playing a particular move and the strength of a player,we could warn
the user: \this move is usually not very good". This might also have applications
in computer Go, as we discuss in Chapter 6. Of course, correlation does not im-
ply causation and simply playing the \good" move more often does notmake us
really stronger.5 Still, the dependencies give hints about some deeper imbalance
in moves one plays.

4.5.1 Feature Evaluation

We have used a simple scheme for feature evaluation. The assumption of this
scheme is that we are interested in features which perform good. We de�ne the
performance of the feature to be the performance of a �xed learner (the same
for all the features). Of course, the learner has to be able to bene�t from the
usefulness of the features.

De�nition. For a �xed learner lev the RMSE error of feature extractor f on
data:

D = f (GCi ; yi ); : : :g

is de�ned as theRMSE error of lev on

T = f (f (GC); y); : : :g; (GC; y) 2 D

4.5.2 Attribute Evaluation

To analyze performances of single attributes, we have used the following scheme.
For the k-th attribute, we inspect the dependency between its valuesx ik (value
of kth attribute in the i th input vector) and the target variable y in the data
T r = f (x i ; yi )g; i = 1 : : : N .

X k = ( x1k ; : : : ; xNk )

4Remember from Chapter 3, that we distinguish betweenfeaturesand attributes . Example
of features are the pattern features, local sequence featureor the histogram features. An
attribute is a particular number vi , wherev is a feature vector. For example, ifv is a particular
pattern feature vector, vi is an attribute giving relative frequency of pattern i .

5The problem of course is that the \good" move is not good under all circumstances and
one should rationalizewhy and when is it so.

31



Y = ( y1; : : : ; yN )

The linear dependency betweenX and Y is measured by the Pearson's cor-
relation coe�cient r , (Rodgers { Nicewander, 1988):

r =
cov(X; Y )

� X � Y

Pearson'sr has a range ofh� 1; 1i , where 1 means perfect linear dependence
(y's grow with growing xk 's), 0 means no linear dependence and -1 signals that
both vectors are anticorrelated (y's decrease with growingxk 's). In the following
text, we shorten the rX;Y to r when the variablesX and Y are clear from the
text.

Limiting ourselves to linear dependencies is not a major issue. Because the
problem is quite hard, the dependencies are rather weak even with the simplest
linear model. If we were to test more complex dependencies, much more data
would be needed.
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5. Experiments

5.1 Strength

The major application of the methodology developed throughout the thesis is
the prediction of strength of players. This part documents the process we un-
dertook. Firstly, we present the dataset we have gathered (Section 5.1.1). Then,
performance of di�erent feature extractors (Section 5.1.2) is analyzed. Next, we
investigate possibilities of strength prediction (Section 5.1.3). Finally, we scruti-
nize single attributes and their relationship with the strength (Section 5.1.4).

5.1.1 Dataset

We have collected a large sample of games from the publicly available archives
of the Kiseido Go server (Shubert, 2013b). The sample consists ofover 100 000
records of games in the.sgf format (Hollosi, 2006).

For each rankr in the range of 6-dan to 20-kyu, we gathered a list of playersPr

of the particular rank. To avoid biases, the sample only consists of games played
on 19� 19 goban without handicap stones.1 The set of colored gamesGCp for
a playerp 2 Pr consists of the games playerp played when he had the rankr . We
only use theGCp if the number of games is not smaller than 10 games. Similarly,
if the player played more than 50 games when at rankr , we randomly sampled
k of them, wherek was uniformly randomly chosen from intervalh10; 50i .2 The
number of games is limited in this manner because for some ranks it is hard to
�nd players with large samples | i.e. weak players and beginners (e.g. on 20-
kyu) usually improve very fast. For each of the 26 ranks, we gathered 120 such
GCp. The distribution of number of games inGCp is comparable for all the ranks,
as Figure 5.1 shows. The target variable for regressiony directly corresponds to
the ranks: y = 20 for rank of 20-kyu, y = 1 for 1-kyu, y = 0 for 1-dan, y = � 5
for 6-dan, other values similarly. (With increasing strength, they decreases.)

5.1.2 Feature Evaluation

We evaluated the performance of various features as discussed inSection 4.5.1. We
have used the initial hand tuned learner (from Appendix C.3) as the evaluation
learner lev.3 We have evaluated many di�erent parameterisations for di�erent
features, as detailed in Appendix C.1. Table 5.1 shows the best parameters found
for each feature extractor along with theRMSE scores.

1Gameplay and strategies on di�erent board sizes di�ers. Similarly, handicap games force
the stronger player to play more aggressively than he would in an even game.

2By cutting the number of games to a �xed number (say 50) for largesamples, we would
create an arti�cial disproportion in sizes of GCp, which could introduce bias into the process.

3 With the exception of the Win/Loss points statistic, where we changed the number of
components of PLS regression to 2 (from 3 inlev ). This was needed because this feature has
small dimension (2) which causes instability of the PLS with 3 latent variables.
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Figure 5.1: Boxplot of game sample sizes. The box spans between 25th and 75th
percentile, the center line marks the mean value. The whiskers cover 95% of the
population. The kyu and dan ranks are shortened to k and d.

Feature Extractor RMSE Parameters
Pattern feature 2.755 N = 1000, independent normalization,

A randomly sampled as 20% of all the games.
Local sequences 5.754 ! = 10
Border distance 5.448 ByDist = fh1; 2i ; h3i ; h4i ; h5; 1 )g,

ByMoves = fh1; 10i ; h11; 64i ; h65; 200i ; h201; 1 )g
Captured stones 5.878 ByMoves = fh1; 60i ; h61; 240i ; h241; 1 )g

Win/Loss statistics 6.806 |
Win/Loss points 5.158 | (see Footnote 3 on page 33)

None 7.507 (obtained by mean regression learner)

Table 5.1: Comparison of the best feature extractors of each kind. The complete
list of features evaluated is given in Appendix C.1. The learner used for evaluation
is given in Appendix C.3. The results were computed using 5-fold validation.
The last row shows performance of the mean regression learner and serves for
comparison.

5.1.3 Regression

In the process of �nding the best learner, we started with a hand-tuned learner
shown in Appendix C.3. Using this learner (which we found to perform reasonably
well, as shown in Table 5.3) we evaluated di�erent feature extractors (previous
section). At �rst the dataset was processed using the best feature extractors,
which were concatenated to form the dataT for regression.

We then used the genetic algorithm (Section 4.3; abbreviated toGA) to �nd
the best performing stacked ensemble. The initial population was seeded by
the hand tuned learner. The parameters of the genetic algorithm are given in
Table 5.2.

Unfortunately, because of the large dimension of the feature vector (especially
the pattern feature which has dimension of 1000 in the best setting) and large
dataset (3120 samples), the time needed for a single iteration was very large in
this setting.4 To speed up the process, we used a smaller pattern feature size

4More than 15 hours for �rst iterations using parallel evaluation on I ntel i3 - 4 core machine
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Parameter Value
Set of base learnersBL Is given in Appendix C.2.

Population sizeS 16
Elite size E 1

Number of iterations Max 100
Mutation probability P mI 0.2
Mutation probability P mv 0.5

Fitness function 1=RMSE of the resulting stacked learner. The
RMSE is computed using 5-fold cross-validation.

Table 5.2: The parameters of the genetic algorithm for the strength dataset.

Learner RMSE Mean cmp
Mean regression 7.507 1.00
Random Forrest 3.869 1:94

PLS 3.176 2:36
Bagged NN 2.701 2:78

Initial hand-tuned learner 2.635 2:85
Best GA stacking ensemble 2.607 2:88

Table 5.3: Regression performance of di�erent learners on the fulldataset. The
feature set used is shown in Table 5.1. The results were computed using 5-
fold cross-validation. Parameters of the best GA stacking ensemble are given in
Appendix C.4, the other learners are taken from the Initial hand-tuned learner
from Appendix C.3.

(400 top patterns instead of 1000) and we subsampled the dataset for computing
the �tness during the GA (by randomly taking 1=10 prior to the running of the
GA). We assume, that this is not a principial obstacle for �nding the best learn-
er, since the down-sampling (and lowering the precision of the pattern feature)
should degrade the performance of the learnerssystematically | the ordering of
�tnesses is expected to be more or less the same, though the �tness values surely
di�er. This is backed by the fact, that the best learner found by the GA scored
very well when run on the full dataset. The run of genetic algorithmtook on
average approximately 2.5 hours per iteration, the machine speci�cation is given
in Appendix C.6.

The performance of the best ensemble found by the GA (on the fulldataset)
are given in Table 5.3 along with other learners to compare performances. The
resulting learner (Appendix C.4) is fairly complex as Figure 5.2 shows. Evolution
of the RMSE error in time is given in Figure 5.3.

5.1.4 Attribute Evaluation

We analysed di�erent attributes for the best features from the previous section
using the methodology presented in Section 4.5.2. We studied attributes, which
were most strongly correlated with the strength of the player.

at 2.3GHz.
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Figure 5.2: Structure of the best stacking ensemble found by the Genetic Algo-
rithm. The circle marks a normal learner, with description within, the\cloud"
denotes a bagging learner. The corresponding bagged learner is connected using
the circle-ended arrow. Precise descriptions of the learners are given in Ap-
pendix C.4. Mean is the Mean regression,PLS Partial least squares regression,
RF Random Forrests,NN various neural networks andk-nn is obviously the
k-nearest neighbor learner.

3.05

3.10

3.15

3.20

3.25

3.30

 10  20  30  40  50  60  70  80  90  100

Iteration

R
M

S
E

Figure 5.3: Evolution ofRMSE error during the run of the genetic algorithm for
�nding an optimal stacking ensemble for the strength data.
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In the following text, we present a few attributes with largest Pearson's cor-
relation coe�cient r along with general trends, more detailed list is given in
Appendix D.

Negatively correlated attributes (\strong players' attri butes")

The attributes most strongly correlated with the increasing strength of player
(r < 0), are mainly a standard patterns with clear strategic meaning, ora part
of joseki sequence5.

The most strongly correlated attribute is the local sequence statistic, the av-
erage number of sente moves per game (r = � 0:512). This backs the assumption
that the concept of sente is indeed very important.

The second most strongly correlated attribute (r = � 0:480), the pattern
shown in Figure 5.4 (left), is a multi-purpose one-point jump. It can be found
being played under di�erent circumstances. For instance, Black might want to
prevent possible invasion (which could be related to the white stone). The pattern
also matches a common move of expanding one's territory, while preventing the
opponent to block this expansion.

The third strongest attribute ( r = � 0:457), is the di�erence between number
of sente and gote sequences. The strength of this attribute is probably caused by
the fact that the number of sente sequences itself is very strong.

The next two attributes are the patterns shown in Figure 5.4 (middleand
right). Both moves have a similar context | they are usually played on the
boundaries of competing forces. Such moves are usually of crucialimportance.
For example, the horse move (keima) pattern (in the middle, r = � 0:455) usually
prevents White from foiling Black's future development by jumping into what
probably is a potential Black's territory.

The pattern on the right (r = � 0:446), shows a one-point jump which tries
to get ahead of White and thus prevent White's possibility of shuttingBlack to
the side (without the marked black stone, White could play ata, which would
probably be unbearable for Black).

Positively correlated attributes (\weak players' attribu tes")

On the other hand, the most strongly positively correlated attributes (r > 0) are
the patterns that exhibit defects or ine�ciencies in shape. The best example of
this is the empty triangle shape (Sensei's Library, 2013d), as shownin Figure 5.5
(left). The fact that the two strongest (r = 0:437 andr = 0:402) bad shapes are
empty triangles backs the commonsense taught to beginners (\Donot play the
empty triangle"). (The second strongest empty triangle patternhas almost the
same con�guration of stones as the �rst one, with the exception that the stone
b is not present.)

As expected, the beginners also tend to capture unnecessary stones | the
third strongest \weak" attribute ( r = 0:377) was the number of captured stones
within �rst 60 moves. The most likely reason for this is that beginnersare not able
to discern between important and unimportant stones and they tend to capture
because \they could" instead of because \it is the best move".

5The joseki are standard sequences of moves which ensure even result for both players. The
joseki are mainly played in the opening and mainly regard corners andtheir approaches.
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a

r = � 0:480, a standard
one-point jump,

preventing White from
capping.

r = � 0:455,
a multi-purpose horse

move.

r = � 0:446, Black is
getting ahead; otw.

White could play at a.

Figure 5.4: Top 3 negatively correlated patterns (\good moves").

b
c d

r = 0:437, an empty
triangle. The second
pattern (r = 0:402)
does not have b

present.

r = 0:351, an overly
solid connection.

r = 0:325, pushing
from behind.

Figure 5.5: Typical positively correlated patterns (\bad moves").

The next attribute is a solid connection (r = 0:351) depicted in the middle
of Figure 5.5. It looks like Black is trying to protect from the cut at . Were
the cut really severe (and this is not sure), it would probably be a better idea to
connect at c (so that Black has a better eye-space), but we cannot give further
interpretation without seeing the rest of the board.

We should also mention another strongly correlated pattern which came up
during the analysis and which is also very important. It is thepushing from
behind pattern (r = 0:325) shown in Figure 5.5 (right). Generally, pushing from
behind is bad because it allows the opponent to play atd, which is a very good
move | it limits Black's future development, while extends White's. Inst ead of

, Black could e.g. play the horse move (Figure 5.4, in the middle), or play
somewhere else.
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5.2 Style

Apart from the strength estimation, we also used the framework presented in this
work to test prediction of playing styles for professional players.The organization
of the text is similar to that of the strength. Firstly, we give details of the
dataset (Section 5.2.1). Next, we investigate performance of di�erent feature
extractors (Section 5.2.2). Using the best features found, we explore possibilities
for prediction of the styles (Section 5.2.3). Finally, we analyze the single attributes
and their relation to di�erent styles (Section 5.2.4).

5.2.1 Dataset

The collection of games in this dataset comes from the Games of Go onDisk
(GoGoD) database by Hall { Fairbairn (winter 2011a). This database contains
more than 70 000 games, spanning from the ancient times to the present.

We chose a small subset of well known players (mainly from the 20th century)
and asked some experts (professional and strong amateur players) to evaluate
these players using a questionnaire.6 The experts (Alexander Dinerchtein 3-pro,
Motoki Noguchi 7-dan, Vladim��r Dan�ek 5-dan and V��t Brunner 4- dan) were asked
to value the players on four scales, each ranging from 1 to 10.

Style 1 10
Territoriality Moyo Territory
Orthodoxity Classic Novel
Aggressivity Calm Fighting
Thickness Safe Shinogi

The scales try to re
ect some of the traditionally perceived playing styles.7 For
example, the �rst scale (territoriality ) stresses whether a player prefers safe, yet
inherently smaller territory (number 10 on the scale), or roughly sketched large
territory ( moyo, 1 on the scale), which is however insecure (we describe the scales
in more details below). Table 5.5 shows the data obtained from the questionnaire.
The mean standard error of the answers is 1.164, which we regard as reasonably
consistent. Table 5.4 shows mean values of answers (across all theplayers) for
the styles along with standard deviation. On the right, the pairwise correlation
of the styles from the questionnaire is given (measured by the Pearson'sr ).

| Pearson's r
Style Mean value Ter. Orth. Aggr. Thick.

Territoriality 5:670� 2:390 1.000 -0.526 -0.602 0.566
Orthodoxity 5:861� 2:415 1.000 0.738 -0.072
Aggressivity 6:722� 2:176 1.000 0.124
Thickness 4:903� 1:667 1.000

Table 5.4: The mean values of styles (across all the answers) and the pairwise
correlation between them.

6Part of the data was reused from our previous work (Baudi�s { Moud�r��k, 2012).
7Refer to Fairbairn (winter 2011), or Sensei's Library (2013j) to grasp the concept deeper.
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Player Territoriality Orthodoxity Aggressivity Thickness

Chen Yaoye 6:0 � 1:0 4:0 � 1:0 6:0 � 1:0 5:5 � 0:5

Cho Chikun 9:0 � 0:7 6:2 � 2:6 6:8 � 1:1 9:0 � 0:7

Cho U 7:2 � 2:0 5:2 � 1:5 6:0 � 1:9 6:2 � 1:5

Fujisawa Hideyuki 3:5 � 0:5 9:0 � 1:0 7:0 � 0:0 4:0 � 0:0

Go Seigen 6:0 � 2:0 9:0 � 1:0 8:0 � 1:0 5:0 � 1:0

Gu Li 6:2 � 1:3 7:8 � 1:5 9:2 � 0:8 5:0 � 1:9

Hane Naoki 7:5 � 0:5 2:5 � 0:5 4:0 � 0:0 4:5 � 1:5

Ishida Yoshio 8:5 � 1:5 4:0 � 2:1 3:0 � 1:2 4:8 � 1:1

Kato Masao 3:0 � 0:8 3:7 � 1:7 8:7 � 1:2 5:7 � 2:4

Kobayashi Koichi 9:3 � 0:9 2:0 � 0:8 2:7 � 0:5 4:3 � 1:7

Luo Xihe 7:3 � 0:9 7:3 � 2:5 7:7 � 0:9 6:0 � 1:4

Ma Xiaochun 8:2 � 1:9 5:2 � 1:9 5:2 � 1:8 6:8 � 2:3

Miyazawa Goro 1:5 � 0:5 10:0 � 0:0 9:5 � 0:5 4:0 � 1:0

O Meien 2:7 � 1:2 9:7 � 0:5 8:3 � 1:7 3:7 � 1:2

Otake Hideo 4:5 � 0:5 2:5 � 0:9 4:2 � 1:3 3:2 � 1:1

Rui Naiwei 5:5 � 1:8 5:5 � 0:5 9:0 � 0:7 4:0 � 1:6

Sakata Eio 8:0 � 1:6 4:0 � 1:2 7:8 � 1:1 8:2 � 1:5

Takao Shinji 5:0 � 1:0 3:5 � 0:5 5:5 � 1:5 4:5 � 0:5

Takemiya Masaki 1:5 � 0:5 5:8 � 2:0 7:2 � 0:8 1:8 � 0:8

Yamashita Keigo 2:0 � 0:0 9:0 � 1:0 9:5 � 0:5 3:0 � 1:0

Yi Ch'ang-ho 7:5 � 1:8 5:2 � 1:9 3:8 � 1:8 3:5 � 0:5

Yi Se-tol 6:0 � 1:2 7:2 � 2:3 9:2 � 0:4 7:2 � 1:5

Yoda Norimoto 7:0 � 1:9 3:8 � 2:0 4:0 � 1:9 3:2 � 1:1

Yuki Satoshi 3:0 � 1:0 8:5 � 0:5 9:0 � 1:0 4:5 � 0:5

Table 5.5: Expert-based evaluation of styles of selected Professionals, including
standard deviation of their answers. Only the players that were evaluated by two
or more experts out of four are included.

For each of the professional players, we took 192 of his games from the GoGoD
database at random.8 We divided these games (at random) into 12 colored sets
GC of 16 games. For each player, we have one target variabley for each style |
basically, we view the problem as 4 di�erent regression problems whichshare the
feature extraction.

8We chose this number because the database does not contain moregames for some of the
players.
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Feature Extractor RMSE Parameters
None 2.403 (obtained by mean regression learner)

Pattern feature 1.558 N = 600, linear normalization,
A randomly sampled as 20% of all the games.

Local sequences 2.267 ! = 5
Border distance 1.663 ByDist = fh1; 2i ; h3i ; h4i ; h5; 1 )g,

ByMoves = fh1; 16i ; h17; 64i ; h65; 160i ; h161; 1 )g
Captured stones 2.381 ByMoves = fh1; 40i ; h41; 160i ; h161; 1 )g

Win/Loss statistics 2.362 |
Win/Loss points 2.415 | (see Footnote 9 on page 41)

Table 5.6: Comparison of the best feature extractors of each kind. The complete
list of features evaluated is given in Appendix C.1. The learner used for evaluation
is given in Appendix C.3. The results were computed using 5-fold validation by
averagingRMSE of all the styles. The last row shows performance of the mean
regression learner and serves for comparison.

5.2.2 Feature Evaluation

We evaluated di�erent features from Appendix C.1 similarly as we did with the
strength data | we have used the same initial hand tuned learner (Appendix C.3)
as the evaluation learnerlev.9 Because the style regression essentially consists of
four di�erent regression problems (one for each style) we could perform the anal-
ysis independently. Doing so would have several drawbacks | most importantly
the features would not be easily comparable and the whole process of feature
extraction would be slowed down four times.

We therefore decided to evaluate the features regardingall the styles. For
a given feature, we used thelev learner to learn four style regression problems,
the �nal RMSE was computed as an average of theRMSE errors from the
subproblems. TheRMSE errors for subproblems were analyzed using 5-fold
cross-validation with the same random seed (which means that the splits were
the same for all the styles). The results are given in Table 5.6.

5.2.3 Regression

Using the concatenation of the best feature extractors from previous section, we
processed the data. Then, we used the genetic algorithm to determine the best
ensemble learner.

During the process, we have encountered over-�tting problems concerning the
size of the dataset.

At �rst, we chose the parameters of the GA to be the same as in theproblem
of strength (Table 5.2), with the exception of the �tness function. The RMSE
error was computed in the same manner as in the style feature extraction (one
learner for all the styles, the �tness of a learner is averageRMSE on the di�erent
styles). Similarly to the case of strength, it turned out that it was not possible

9 Again with the exception of the Win/Loss points statistic, where we changed the number
of components of PLS regression to 2 (from 3 inlev ). This was needed because this feature has
small dimension (2) which causes instability of the PLS with 3 latent variables.
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to use cross-validation on the full dataset because of time constraints. We tried
to workaround this by subsampling the data prior to the experiment, but due to
relatively small size of the dataset, this resulted in over-�tting of the resulting
ensemble model.

Secondly, we tried not to use the cross-validation, but to use proportional
division scheme instead | the �tness is evaluated by randomly taking 70% of
the dataset for training and the rest for testing; in each of the iterations, this
is done anew to mitigate any e�ects caused by biased random split (dividing
the dataset once prior to the run would cause over-�tting). Unfortunately, this
too did not yield satisfactory results. Even though over-�tting was not the case,
the genetic algorithm was not able to consistently improve the ensembles | the
subsampled datasets in each of the iterations were too di�erent toensure that
the best individiuals from one iteration would have good chances in thenext one.
This rendered the genetic algorithm unsucessful.

Consequently we concluded, that the robust cross-validation withthe full
dataset is necessary and that we thus need to compensate for the increased re-
source consumption di�erently. We did this by limiting the population size to 10
individuals and most importantly, by limiting the ensemble to contain at most 5
base learners. Technically, this is done by randomly removing excessnumber of
base learners from each individual at the end of each iteration. Additionally, we
decided to run the GA independently for each of the styles, insteadof optimizing
one ensemble learner for all the styles (as above). The parameters of the �nal
genetic algorithm are listed in Table 5.7.

The performances of the best learners found are given in Table 5.8 and the
learners are listed in Appendix C.5. Development of theRMSE error in time is
given in Figure 5.6. Each run of the genetic algorithm (for di�erent styles) took
approximately one hour of CPU time per iteration, the machine speci�cation is
given in Appendix C.6.

Parameter Value
Set of base learnersBL Is given in Appendix C.2.

Population sizeS 10
Elite size E 1

Number of iterations Max 100
Mutation probability P mI 0.2
Mutation probability P mv 0.5

Ensemble size limit 5
Fitness function 1=RMSE of the resulting stacked learner. The

RMSE is computed using 5-fold cross-validation.

Table 5.7: The parameters of the genetic algorithm for the style dataset.

5.2.4 Attribute Evaluation

Following the same procedure we used in strength attribute evaluation, we scru-
tinized the dependences between the styles and di�erent attributes. The results
have some signi�cant properties. Generally, the opening moves (which in sense
form the shape of the following game) have high importance, as do some other
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RMSE
Learner Territoriality Orthodoxity Aggressivity Thickness

Mean regression 2.403 2.421 2.179 1.682
Initial hand tuned l. 1.434 1.636 1.423 1.484
The best GA learner 1.394 1.506 1.398 1.432

Table 5.8: Regression performance of di�erent learners on the fulldataset. The
feature set used is shown in Table 5.6. The results were computed using 5-fold
cross-validation.
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Figure 5.6: Evolution ofRMSE error during the run of the genetic algorithm for
�nding an optimal stacking ensemble for the style data.

typical formations. Moreover, because the styles themselves are correlated with
each other (relatively strongly { Table 5.4), the results for di�erent styles are
often related, as illustrated in the following text.

Territoriality

The scale of territoriality spans from the style which emphasizes moyo-based,
in
uence style of game (number 1 on the scale) and a style which stresses safe
territory on the other side (number 10 on the scale). Regarding correlations of
the attributes, this corresponds to positive Pearson'sr > 0 for the territorial style
and r < 0 for players preferring moyos.

The attributes seem to capture this scale exceedingly well, the correlations are
strong and have clear interpretations. In the opening (�rst 16 moves), increasing
territoriality is revealed by preference of third line moves (r = 0:621, the border
distance feature), while the moyo style is most strongly correlated(r = � 0:555)
by playing to 5th line or higher. In line with the common knowledge, playing on
the fourth line in the opening (again, the border distance feature)also correlates
with moyo-based style of the game (r = � 0:530).

The pattern attributes seem to reveal the same information. Thestrongest
territory focused pattern is the horse move extension (most probably a corner
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r = 0:537, a horse
move enclosure.

r = 0:473, a two space
3rd line extension.

r = � 0:317, preventing
White from
connecting.

Figure 5.7: Territoriality. r > 0 for patterns correlated with increasing territori-
ality, r < 0 for patters which correlate with the moyo style of game.

enclosure) ofr = 0:537 and a slightly weaker two space third line extension of
r = 0:473. The strongest pattern with negativer = � 0:317 is a move which
prevents White from connecting underneath | allowing the enemy toconnect
is often bad, because connected group are stronger and the in
uence-preferring
player wants to use his in
uence to �ght. All these pattern attributes are shown
in Figure 5.7.

Figure 5.8: r = 0:292, secur-
ing the side.

Another interesting result is the fact, that the
territoriality is also correlated with the di�erence
between average number of sente and gote moves
(r = 0:347) and the average number of sente moves
(r = 0:336). Since the! = 5, which considers
rather tightly local responses, we believe that this
corresponds to moves which close the side in sente
(e.g. from sliding under the stones, as also backed
by a pattern attribute in Figure 5.8).

Orthodoxity

The orthodoxity scale spans from 1 (players with a classic style, Pearson's r < 0)
and 10, which corresponds to a novel style of play (r > 0).

The strongest attributes that correlate with classic style of gameare related to
that of territorial style from above. For example, the strongest\classic" attribute
is the number of stones on third line played in the opening withr = � 0:479; the
second strongest is the horse move enclosurer = � 0:456. The orthodox player
also likes the formation shown in the middle of Figure 5.9,r = � 0:374.

Figure 5.10: r =
0:249, a crosscut.

On the other hand, the novel player tends to play open-
ings stressing in
uence by playing on the fourth liner =
0:429 or higherr = 0:317 (opening moves that are played
higher than on the fourth line are quite uncommon, not stud-
ied as thoroughly and thus probably giving possibilities for
innovative moves). Apart from the opening moves, attributes
for novel players (r > 0) are generally weaker than those for
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2
1

r = � 0:456, a horse
move enclosure.

r = � 0:374, pulling
back after an

attachment of Black 1.

r = � 0:367, a two space
extension.

Figure 5.9: Orthodoxity. r > 0 for novel players,r < 0 denotes a classical style
of game.

the classic player. This is not surprising, because novel players tend to come
up with new and unique moves; thus trying to �nd a typical novel move might
prove to be elusive. For example, the strongest pattern attribute with positive r ,
the crosscut shown in Figure 5.10, is not really a novel move. However, it often
results in a complicated position, which could give opportunities for surprising
innovative moves.

Aggressivity

1

r = � 0:306, an
endgame move.

r = � 0:265, a corner
invasion.

r = 0:262, a hane at
the head of enemy

stones.

Figure 5.11: Aggressivity.r > 0 for players who like to �ght, r < 0 marks a calm
player.

The aggressivity scale spans from the calm playing style (number 1, attributes
correlating with decreasing aggressivity haver < 0), to very aggressive game style
(number 10 on the scale,r > 0), where the player loves to �ght.

Again, (with a few interesting exceptions) the calm player tends to play on
the third line in the opening (r = � 0:428), likes secure territory in the corner
(second strongest attributer = � 0:426 is the same horse move enclosure from
previous styles), and safe two space extensionr = � 0:403 (we omit these two
patterns, since the reader is already familiar with them from above).
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Moreover, he likes to play a 3-3 corner invasionr = � 0:265 Figure 5.11
(middle). Most probably, this is a part of the sequence showed in Figure 5.12.
1 approaches the white 4-4 stone,2 is a very aggressive response, a so-called

pincer (Sensei's Library, 2013b).3 is a calm response, giving up the1 for now
and taking the corner instead.

1

2

3

Figure 5.12: A standard
joseki.

Finally, the calm player tends to win by points
r = � 0:349 more than the aggressive player. Inter-
estingly, the third strongest pattern correlated with
calmness was the endgame move (r = � 0:306) on the
left of Figure 5.11. This might mean that a strong
calm player is aiming to win the game during the
endgame, which usually requires mechanically precise
reading and counting.

The �ghting player likes to play on the fourth line
in the opening (r = 0:418). The second strongest at-
tribute ( r = 0:334) of the �ghting player is the number
of moves played above the fourth line in theearly mid-
dle game(moves 17 to 64) | these moves might be
reductions of the opponents territory or preparations
of the battle�eld for future running �ghts. In line with our expecta tion, the
�ghting player also tends to win by resigns (r = 0:234).

Thickness

r = 0:342, a spacious
move on a third line.

r = 0:288, a clamp,
often a key move of a

tesuji.

r = 0:258, yet another
horse move enclosure.

Figure 5.13: Thickness.r > 0 for players who are skilled at shinogi,r < 0 for
player whose formations are safe.

Finally, there is the thickness scale. It spans from safe style of game (1,
r < 0) to shinogi style (10,r > 0). As discussed in Chapter 1.3.3, thick positions
have little or no weaknesses.Shinogi is a term used when a player skillfully
overcomes a crisis. The scale de�nition is not that clear-cut in comparison with
the preceding scales, and also the variance of answers of the questionnaire is lower
than the other scales.

The dependencies for the thickness scale are generally weaker than we have
seen with the previous styles. Regarding the shinogi end of the scale, the strongest
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attribute is the number of opening moves played on the third line (r = 0:352),
followed by a third line pattern (r = 0:342) which could be a wide extension, or
a move intended to disrupt enemy side formation in the opening (Figure 5.13, left).
Interestingly, the third strongest attribute with positive correlation ( r = 0:288)
is a pattern attribute showing a contact move called clamp, which is often a part
of tesuji (a cunning sequence which achieves something | e.g. saving a group,
capturing enemy's key stones, etc.). The next strong pattern correlated with
mastering the shinogi is the number of moves played on the �rst or second line
within the early middle game r = 0:272. This could very well correspond to
moves that are securing life in an enemy's sphere of in
uence, or placing stones
that will be sacri�ced to yield an advantage | playing this low this early n either
builds a nice territory (third line is supreme in this), nor builds in
uencedirectly.

The thick part of this scale does not yield dependencies with clear interpreta-
tion. The two strongest attributes with r < 0 are the number of moves played on
four line in the opening (r = � 0:312), or above (r = � 0:261). In line with this,
the third is the number of stones played above the fourth line in the early middle
gamer = � 0:224. These moves are not really moves characteristic for what we
consider thick.

Figure 5.14: r = � 0:216,
A very thick move, called
the iron pillar.

We believe that the main reason for this is the
Takemiya Masaki, who is a strong outlier on this
scale. Master Takemiya is known for building ex-
treme moyos and prefer in
uence very strongly over
safe territory. His games have often depended on
whether the opponent lives inside the sketched moyo
or not | so the score of 1.8 he received on the scale
of thickness maybe does not re
ect the fact that he is
very thick and plays safely (which he does not), but
the fact that his groups do not often need to shinogi,
because it is the opponents who do. This probably
implies, that the scale of thickness was not chosen
very well. We treat this matter further in the discussion (Chapter 6).

Only the fourth strongest negative attribute (r = � 0:216) has clear interpre-
tation as a thick move, it is the iron pillar block shown in Figure 5.14.
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6. Discussion and Future Work
In this work, we dealt with many issues regarding the possibilities of inference
of di�erent variables (strength, styles) from collections of records of the game of
Go. We found out that the inference of these variables is indeed possible, under
few assumptions.

Most importantly, we need a set of robust features, that are general enough
to capture information present in games, which is relevant to the target vari-
able. Based on our knowledge of the game, we invented a number of features
(Chapter 3) and tested their performance under di�erent settings (Sections 5.1.2
and 5.2.2). In line with our expectations, di�erent target variables are best cap-
tured by di�erent features and attributes. A clear example of thiswas seen in
the case of style: the histogram feature of distance from the board edge (in the
opening) proved to capture the territoriality very well (Section 5.2.2). Generally,
the pattern feature turned out to be the strongest for both the strength and the
styles regression problems | this is because the pattern feature basically consists
of statistics of many independent1 patterns and the machine learning methods
can \pick" the ones that are relevant. Analysis of the individual attributes (Sec-
tions 5.1.4 and 5.2.4) reveals, that all the features have useful attributes for some
of the target variables | for example, the number of sente sequences correlates
with strength, as did the number of captured stones in the early game. To men-
tion one more example, the percentage of games won by resignationcorrelates
with the aggressivity of a player.

Concerning the correlations, we need to say that except for the strongest
correlation of a single attribute we have found, which had Pearson'sr of 0:6212,
the dependencies were not very strong. The few best attributesfor each variable
have what would be better called a moderate dependency, on average spanning
from r = 0:25 to r = 0:5. We conclude, that the feature space (de�ned by di�erent
features we have used) comprises many relatively weakly correlated attributes and
only a few attributes that are correlated moderately. Overall, we should also note
that we consider the fact that almost all of the most strongly correlated attributes
were in line with common Go knowledge to be a sign of good \expressive"power
of the features.

Secondly, to obtain the best performance, robust machine learning methods
(Chapter 4) are needed. These need to be powerful enough to make use of the
weak dependencies in the data. We have tested di�erent algorithms| out of
these, the method of stacked generalization turned out to have supreme perfor-
mance. At �rst, we tried to hand-tune the ensemble (Appendix C.3), to �nd out
that this is too cumbersome and time-consuming if best performance is sought.
To solve the problem of �nding the best combination of learners into the stacked
ensemble, we designed a genetic algorithm, which showed an improvement3 of 3%
(for the strength data, Section 5.1.3) and of 6% (average improvement for the
style data, Section 5.2.3) over the initial hand tuned ensemble, whichwe consider

1Strictly speaking, the attributes are truly independent only when independent normaliza-
tion (Section 3.2) is used.

2The correlation marks dependency between theterritoriality scale, and the number of
moves played on the third line during the opening phase, Section 5.2.4.

3The baseline being the mean regression learner.
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a good result. This might not seem like a lot, but remember that we compare
the best GA learner with the best hand-tuned learner we found4. The ensembles
evolved by the genetic algorithm are fairly complex (e.g. Figure 5.2) and would
not be probably found by hand at all. It should be noticed, that the method of
the genetic algorithm does however take considerable amounts of time. In cases
where this would not be feasible, some worse (in terms of performance) yet faster
method could be used. For instance, bagged neural network on itself performed
pretty well (Table 5.3).

Finally, the scales need to be de�ned clearly and we need reliably tagged data.
For example, the ranking system in the game of Go is very clearly de�ned by
means of handicap stones (Section 1.2). Similarly, the scale of e.g.territoriality
seems to be de�ned very well | judging by the results of the style regression
(Section 5.2.3) and the fact that the strongest attributes seem to be in accordance
with the traditional knowledge. On the other hand, the analysis of the strongest
attributes correlated with the thick-playing end ofthicknessscale (Section 5.2.1)
did not give patterns that really correlate with the traditional concept. The fact
that the thickness scale is somewhat di�erent from the other styles can also be
guessed from the standard deviation� = 1:6 of the answers on the thickness scale
part of the questionnaire, which is much lower than that of the other styles (other
styles have� ranging from 2.176 to 2.415, see Table 5.4). Were the answers on
the scale 1 to 10 distributed uniformly, the� would be approximately 2:6.5 This
basically means that the scale of thickness is not \used well". This is also backed
up by the comment of one of the interviewees, Vladim��r Dan�ek, whonoted that
the concept of thickness is sometimes not in opposition to shinogi, but rather in
coordination with it | when one plays thickly on one side of goban, he often
plays shinogi on the rest. The interviewees might thus simply have understood
this scale as how skilled the particular pro�essional is in playing shinogi.

Regarding the styles, one more point should be made. We have seen,that the
strongest attributes were often very similar. For example, the knight-move corner
enclosure appears for the territory stressing player, the playerwith classic style
and the player who plays safely. This is in line with the correlations of the scales
themselves (Table 5.4). It might be however interesting to look for concepts that
are orthogonal.

Future work and applications

Indeed, the methodology presented in this work could be extended. Regarding
the prediction abilities, we believe that apart from increasing the dataset sizes6

generally the only feasible way of further improvement is to add new features that
capture di�erent aspects of the gameplay (or re�ne the ones presented here). We
made this conclusion after trying many di�erent learners and othermachine learn-
ing techniques. To name a few, we elaborated with the Support Vector Regression
(Smola { Sch•olkopf, 2004), yet we were unable to get performances comparable

4Of course, the hand-tuned learner was tuned to the domain of strength, so the expected
improvement is naturally bigger for the case of styles.

5From de�nition of standard deviation of random variable X from U(a; b), � 2 = EX 2 �
(EX )2 = : : : = ( b� a)2=12.

6Which has clear computational limits.
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to any other methods and the SVM took considerable time to learn.7 We also
tried to preprocess the data by the Principal Component Analysis (Jolli�e, 1986),
a commonly used method to reduce dimension8, but it did not yield any improve-
ment whatsoever. Observing the performance of learners with the current set
of features suggests that there is a clear upper bound on precision that can be
achieved (see Table 5.3). We therefore believe that improving the features is the
way to improve the performance further.

For example, we have devised a histogram feature which counts numbers of
captured stones (Section 3.4.2). A straightforward idea would be to extend the
counts to include the dead stones9 as well. Deciding which stones are dead and
which are alive is however in itself not an easy problem. Luckily, the status of
a stone (or a group of them) can be estimated using methods of theMonte-Carlo
tree search.10 By looking at the owner of a stone at the end of each random
simulation, the probable owner can be estimated. Moreover, this is astandard
part of the MCTS bots, such as the Pachi (Baudi�s et al., 2012) wealready use to
extract the patterns. We plan to extend the Pachi to output thisinformation in
the future, the new feature could simply extend the captured stones histogram
from this work.

Adding new features and improving the prediction power is not important
just for the sake of it, but also because of possible applications. For instance, we
see some interesting potential in the attribute evaluations of the pattern feature.

Firstly, there is the educational potential | the attribute analysis of strength
gives us a list of patterns (or other attributes), that are mainly played by weak
players (Section 5.1.4). By simply pointing out the fact that a certainmove is bad
and why is it so, we can give any particular weak player a direct advice regarding
his play. To test the idea, we have implemented this in the web application
(Appendix A) for the top few bad patterns. Of course, this can be\reliably" done
only for the most strongly correlated patterns, since the weakerdependencies are
burdened by larger error.

Secondly, regarding the pattern attributes (and strength), the attribute eval-
uation could help to improve computer Go programs. For a given set of pat-
terns11, the method essentially gives weights of each pattern. This weighting
might improve the random Monte-Carlo simulations, similarly as in (Coulom,
2007). Moreover, this could even be used to balance the level of the bot | mak-
ing the bot do human-like bad moves could give more natural feel of the game
for a weak human player. As far as we are aware, this is a novel idea.

The strength estimation could also be used to help to determine initialranking
of a player, both on the internet (where it often takes some time before the

7Apart from simple manual tuning, we also used (to no avail) the automatic parameter
searching techniques present in the Orange datamining framework(see Appendix B, Imple-
mentation).

8We tried to reduce the dimension by taking the coe�cients of projection to base of �rst
N components, for di�erent values of N .

9Remember from Chapter 1.1 that dead stones do not have two eyes and cannot be con-
nected with stones that arealive.

10We mentioned the Monte-Carlo tree search in Chapter 1 on page 4, for instance, see
Browne et al. (2012).

11We use the topN patterns from the data set (Chapter 3.2), but we could for example use
all the spatial con�gurations up to a certain (reasonably small, e.g. 3 or 4) gridcular distance.
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ranking algorithm converges to the real value) and in the real matches. In the
near future, we plan to study how small could the number of games really be to
still give a reliable estimate of the strength. From some initial experiments we
have performed with the strength dataset from Section 5.1.1, it seems that the
precision does not depend on the number of games, as far as the sample is larger
than 10 games.

Similarly, precise prediction of style can serve as a tool for Go players | we
can recommend professional games to review or point out some things to focus on
to balance player's skillset. We also realized this as a part of the web application
(Appendix A). Based on the user's predicted style, we compute theEuclidean
distance to the professionals from the style questionnaire (Section 5.2.1) and
present the user those who are relevant12. We are aware of only two tools, that
do something alike, both of them are however based on a prede�nedquestionnaire.
The �rst one is the tool of Mr. Dinerchtein (2012) | the user answers 15 questions
and based on the answers he gets one of prede�ned recommendations. The second
tool is not available at the time of writing, but the discussion at (Sensei's Library,
2013l) suggests, that it computed distances to some pros based on user's answers
to 20 questions regarding the style. We believe, that our approachshould be more
precise, because the evaluation takes into account many aspectsof the games. On
the other hand, since the style estimation in our work is trained on professional
players' data, inadequate skill of the user is surely a source of errors13; it is
however a question for a further discussion whether the conceptof style as we
de�ned it is even relevant for a beginner. Since the web application allows us to
receive feedback on the style predicted, we plan to investigate thisfurther in the
future.

12We show the 4 professional players that are closest to the user and 4 that are farthest
apart, based on the euclidean distance, see the web application fordetails.

13Which we unfortunately cannot even enumerate, since we have no style data for weaker
players yet.
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Conclusion
In this work, we extended the methodology for extracting evaluations of players
from a sample of Go game records originally presented in (Baudi�s { Moud�r��k,
2012). Firstly, we added more features and laid out a methodology for their
comparison. Secondly, we developed a robust machine-learning framework, which
is able to capture the dependencies between the evaluations and general target
variable using ensemble meta-learning with a genetic algorithm.

We applied this framework to two domains, estimation of strength and styles.
The results show that the inference of the target variables in bothcases is viable
and reasonably precise, except for the style scale of thickness which was not,
however, de�ned well. Finally, we have presented a web application, which realizes
the methodology, while presenting a prototype teaching aid for theGo players
and gathering more data.

Overall, we hope that the �ndings of this work will be useful in deepening
both human and computer understanding of the game of Go.
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A. Web Application
The web application is published as a part of the GoStyle project, which we
founded to study the possibilities of the computer analysis of Go game records
by methods presented in this work. (Moud�r��k { Baudi�s, 2013) The web of the
project has two main parts:

1. An interactive questionnaire.1

2. The web application itself.2

Interactive questionnaire

The sole purpose of the interactive questionnaire1 is to get preciser data about
the styles of professionals. It serves to substitute our old method of gathering
information from strong players by e-mail and copying and formating the infor-
mation by hand. The information obtained is the same as in the questionnaire
from Section 5.2.1. For a number of strong professional players (and also a few
strong amateurs that are active on the Kiseido Go Server (Shubert, 2013a)), we
ask the interviewee to evaluate style of these players. See Section5.2.1 for details
about the styles.

Web application

The web application2 allows anyone to upload a sample of games (or specify
a Kiseido Go Server nickname). Based on the sample, we do several things:

� We estimate the strength of the player (as in Section 5.1),

� we estimate the style of the player (Section 5.2),

� based on the estimated style, we reccomend a list of 4 professionals(from
Section 5.2.1) whose styles are closest (by computing Euclidean distance
between the styles) and 4 professionals whose styles are farthest.

� Also, we compare the feature vector computed by the strength regression
with a linear model �tted for the top \weak players' attributes" an d in
case that the value of the attribute in the sample is corresponding to play-
er who is weaker than 8-kyu, we warn the user.3 This serves as a very
simple teaching aid. Currently, this approach is limited by the fact, that
the dependencies of single attributes are very weak and have largeerror, as
discussed in Chapter 6.

1 http://gostyle.j2m.cz/questionare.html
2 http://gostyle.j2m.cz/webapp.html
3We warn the user about the empty triangles, stones captured in the opening, pushing from

behind, number of sente and gote sequences.
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� Finally, we let the user correct the strength and style (if he thinks the
web application is mistaken). This feedback will allow us to improve the
methods in the future.

The source code for both the server and client part is available online, as
detailed in the implementation (Appendix B). Some screenshots of the web ap-
plication follow.

Figure A.1: A portion of the Web Application, showing how can the userupload
data.

Figure A.2: A portion of the Web Application, showing results of the strength
estimation for a weak player (whose real strength in this case is 13-kyu).
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Figure A.3: A portion of the Web Application, showing results of style estimation
and similar professionals for a weak player.
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Figure A.4: A portion of the Web Application, showing some recommendations
for a weak player.
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B. Implementation
The code used in this thesis1 is available on the attached CD, or released online as
a part of GoStyle project (Moud�r��k { Baudi�s, 2013). The majo rity of the source
code is implemented in the Python programming language.2

The majority of the machine learning methods used were taken fromthe
Orange Datamining suite (Curk et al., 2005), with the exception of the Fast Ar-
ti�cial Neural Network library FANN (Nissen, 2003) and our wrapper for this
library (Moud�r��k, 2013).

We used the Pachi Go engine (Baudi�s et al., 2012) for the raw pattern feature
extraction.

Web Application

The server part of the web application is written in the Python programming
language (Python Software Foundation, 2008), with aid of the Celery framework
for asynchronous task processing (Celery Project, 2013).

The client part is a standard combination of HTML and Javascript andit
uses the AngularJS framework (Google and community, 2013).

1http://repo.or.cz/w/gostyle.git
2(Python Software Foundation, 2008)
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C. Parameters

C.1 Feature Extractors
Feature extractor Settings

Pattern feature Normalization 2 f independent; proportional; linearg,
N 2 f 200; 400; 600; 800; 1000g all combinations, A ran-
domly sampled as 20% of all the games in the domain.

Local sequences ! 2 f 5; : : : ; 15g
Border distance ByDist = fh1; 2i ; h3i ; h4i ; h5; 1 )g, ByMoves =

fh1; Ai ; (A; B i ; (B; C i ; (C; 1 )g, A 2 f 10; 16g; B 2
f 44; 54; 64g; C 2 f 160; 200; 240g, all combinations.1,2

Captured stones ByMoves = fh1; Ai ; (A; B i ; (B; 1 )g, A 2
f 40; 60; 80g; B 2 f 160; 200; 240g, all combinations.1

Win/Loss statistics |
Win/Loss points |

1 The bounds for the parameters were partially limited by hand tuning prior to
experiments.

2 The motivation behind the relatively large number of boxes is to capture both
the very early opening and late opening/very early middle game, whichwe
expected to have a big importance. The last two intervals should correspond
to late middle game and endgame.
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C.2 Base Learners and their Settings

Base learner Settings
Mean regression |
PLS regression l 2 f 2; : : : ; 10g

k-nearest neighbors k 2 f 10; 20; : : : ; 60g, � 2 f 10; 20g,
� 2 f Manhattan; Euclideang, all combinations.

Random Forests N 2 f 5; 10; 25; 50; 100; 200g
Neural network Desired � 2 f 0:001; 0:005g, max 2

f 50; 100; 200; 500g iterations, 1 hidden layer
with number of neurons2 f 10; 20g, all combina-
tions. We used the symmetric sigmoid activation
function.1 2

Bagged Neural networks For ensemble sizes of2 f 20; 40; 60g, each Neural
network (from right above) was tested.

1 We have used a neural network with one hidden layer. The number ofneurons
in the input and output layers depends on the dimensions of data. Moreover,
the range of activation function is (� 1; 1), while the range of domains of
dependent variables in the work is larger (e.g.h� 5; 20i for strength data).
Therefore, we had to scale the data. Given a training setT r = f (x i ; yi ); :::g,
we mapped themin (yi ) to -1 and max(yi ) to 1 and the values in between
linearly. (Of course, the process is reversed when we predict the value, to
give y's from the original range). The training data thus should not have
smaller domain than the testing data, or the error is increased. Withproper
training/testing data sampling, we did not �nd this to be a problem.

2 The bounds for the parameters were partially limited by hand tuning prior to
experiments, because training the neural network is computationally costly.

C.3 Initial Hand-tuned Learner

This learner was found by hand-tuning for the strength data and we use it as
a reference learner throughout the work.

Ensemble learner Settings
Stacking 4 folds, level 2 learner: Neural network with desired

� = 0:005,max = 100 iterations, 1 hidden layer with
10 neurons.

Base learners Settings
Mean regression |
PLS regression l = 3

k-nearest neighbors k = 50, � = 20, � = Manhattan.
Random Forests N = 50

Bagged Neural network 20 � Bagged Neural network: desired� = 0:001,
max = 100 iterations, 1 hidden layer with 10 neu-
rons.
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C.4 Strength: Best GA Stacking Ensemble

Ensemble learner Settings
Stacking 6 folds, level 2 learner: Bagged (20� ) Neural network

with desired � = 0:005, max = 500 iterations, 1
hidden layer with 10 neurons.

Base learners Settings
Mean regression |
PLS regression l = 3

Random Forests N = 50
Neural network Desired � = 0:001, max = 200 iterations, 1 hidden

layer with 20 neurons.
k-nearest neighbors k = 20, � = 20, � = Euclidean.
k-nearest neighbors k = 40, � = 10, � = Manhattan.
k-nearest neighbors k = 40, � = 10, � = Euclidean.
k-nearest neighbors k = 40, � = 20, � = Euclidean.
k-nearest neighbors k = 50, � = 10, � = Manhattan.
k-nearest neighbors k = 50, � = 20, � = Manhattan.
k-nearest neighbors k = 50, � = 20, � = Euclidean.
k-nearest neighbors k = 60, � = 10, � = Euclidean.
k-nearest neighbors k = 60, � = 20, � = Euclidean.

Bagged Neural network 20 � Bagged Neural network: desired� = 0:001,
max = 100 iterations, 1 hidden layer with 10 neu-
rons.

Bagged Neural network 40 � Bagged Neural network: desired� = 0:005,
max = 100 iterations, 1 hidden layer with 10 neu-
rons.

Bagged Neural network 40 � Bagged Neural network: desired� = 0:001,
max = 500 iterations, 1 hidden layer with 20 neu-
rons.

Bagged Neural network 20 � Bagged Neural network: desired� = 0:005,
max = 200 iterations, 1 hidden layer with 20 neu-
rons.

Bagged Neural network 40 � Bagged Neural network: desired� = 0:005,
max = 500 iterations, 1 hidden layer with 20 neu-
rons.
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C.5 Style: Best GA Stacking Ensemble

C.5.1 Territoriality

Ensemble learner Settings
Stacking 5 folds, level 2 learner: Bagged (40� ) Neural network

with desired � = 0:001, max = 200 iterations, 1
hidden layer with 20 neurons.

Base learners Settings
PLS regression l = 3

k-nearest neighbors k = 20, � = 10, � = Euclidean.
Bagged Neural network 40 � Bagged Neural network: desired� = 0:001,

max = 100 iterations, 1 hidden layer with 10 neu-
rons.

Bagged Neural network 40 � Bagged Neural network: desired� = 0:001,
max = 200 iterations, 1 hidden layer with 10 neu-
rons.

Bagged Neural network 40 � Bagged Neural network: desired� = 0:005,
max = 50 iterations, 1 hidden layer with 10 neurons.

C.5.2 Orthodoxity

Ensemble learner Settings
Stacking 6 folds, level 2 learner: Neural network with desired

� = 0:001,max = 200 iterations, 1 hidden layer with
20 neurons.

Base learners Settings
PLS regression l = 3

k-nearest neighbors k = 40, � = 10, � = Manhattan.
k-nearest neighbors k = 40, � = 20, � = Manhattan.

Neural network Desired � = 0:001, max = 50 iterations, 1 hidden
layer with 20 neurons.

Bagged Neural network 40 � Bagged Neural network: desired� = 0:005,
max = 200 iterations, 1 hidden layer with 20 neu-
rons.
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C.5.3 Aggressivity

Ensemble learner Settings
Stacking 6 folds, level 2 learner: Bagged (20� ) Neural network

with desired � = 0:005, max = 500 iterations, 1
hidden layer with 10 neurons.

Base learners Settings
PLS regression l = 3

k-nearest neighbors k = 10, � = 10, � = Euclidean.
Neural network Desired � = 0:001, max = 500 iterations, 1 hidden

layer with 10 neurons.
Bagged Neural network 40 � Bagged Neural network: desired� = 0:005,

max = 100 iterations, 1 hidden layer with 20 neu-
rons.

C.5.4 Thickness
Ensemble learner Settings

Stacking 2 folds, level 2 learner: Neural network with desired
� = 0:005,max = 500 iterations, 1 hidden layer with
20 neurons.

Base learners Settings
Mean regression |
PLS regression l = 2
Neural network Desired � = 0:005, max = 200 iterations, 1 hidden

layer with 10 neurons.
Neural network Desired � = 0:001, max = 500 iterations, 1 hidden

layer with 20 neurons.
Bagged Neural network 40 � Bagged Neural network: desired� = 0:005,

max = 500 iterations, 1 hidden layer with 10 neu-
rons.

C.6 Testing Machine Speci�cation

The software was run on the GNU/Linux operating system with kernel of version
3.4.10. The machine is powered by the 4-core Intel i3 CPU at 2.3 GHz. The
�tness evaluations for the Genetic algorithm were written to run in parallel.
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D. Strength Attribute Evaluation
Table D.1 gives the �rst 30 most strongly correlated attributes. Figures D.1
to D.3 show the spatial con�gurations of the Pattern attributes. The Pearson's
r coe�cient is negative for attributes mostly played by strong players, andr > 0
for attributes that are played by weak players.

Because majority of the attributes in the Table D.1 are negatively correlated,
we list some of the positively correlated attributes to complete the picture in
Table D.2.

Feature name Pearson r Attribute description
Local sequences -0.512 An average number of sente sequences,! = 10

Pattern -0.480 A one-point jump
Local sequences -0.457 An average di�erence between the number of

sente and gote sequences,! = 10
Pattern -0.455 A horse move
Pattern -0.446 Jumping ahead
Pattern -0.438 An attachment, part of a joseki sequence
Pattern 0.437 An empty triangle
Pattern -0.424 A peep at a one-point jump
Pattern -0.409 A general one-point approach move
Pattern 0.402 An empty triangle
Pattern -0.398 A one-point approach move on the third line
Pattern -0.391 An attachment in the corner
Pattern -0.381 A connection to prevent a cut
Pattern -0.381 A diagonal move,kosumi

Captured stones 0.377 An average number of stones captured within
�rst 60 moves.

Pattern -0.376 A one-point jump (probably to the center)
Pattern -0.368 Pushing ahead
Pattern -0.366 A horse move (keima) corner approach
Pattern -0.364 A peep at a one-point jump
Pattern -0.360 A horse move approach

Local sequences -0.358 An average number of gote moves,! = 10
Pattern 0.351 A solid connection
Pattern -0.349 A hane at one stone
Pattern -0.348 An attachment to one stone
Pattern -0.346 A horse move
Pattern -0.346 Securing life in corner
Pattern -0.344 Cutting through a horse move

Captured stones 0.343 Average number of stones captured by oppo-
nent within �rst 60 moves.

Win/Loss points 0.342 Average number of points for lost games.
Pattern -0.341 A horse move approach

Table D.1: List of attributes most strongly correlated with strength.
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Feature name Pearson r Attribute description
Pattern 0.333 A \weird" shape

Win/Loss stat 0.331 Average di�erence between number of games
lost by points and lost by resignation.

Pattern 0.325 Pushing from behind
Captured stones 0.324 Average number of stones captured by oppo-

nent in the middle game (moves2 h61; 240i )
Pattern 0.317 An endgame move after opponent's mistake

Table D.2: List of some other positively correlated attributes.

r = � 0:480 r = � 0:455 r = � 0:446

r = � 0:438 r = 0:437 r = � 0:424

r = � 0:409 r = 0:402 r = � 0:398

Figure D.1: First 9 most correlated pattern attributes, along with the Pearson's
correlation coe�cient r .
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r = � 0:391 r = � 0:381 r = � 0:381

r = � 0:376 r = � 0:368 r = � 0:366

r = � 0:364 r = � 0:360 r = 0:351

r = � 0:349 r = � 0:348 r = � 0:346

Figure D.2: Next 12 most correlated pattern attributes, along withthe Pearson's
correlation coe�cient r .
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r = � 0:346 r = � 0:344 r = � 0:341

r = 0:333 r = 0:325 r = 0:317

Figure D.3: Further strongly correlated pattern attributes and their Pearson's
correlation coe�cient r .
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